1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
/*
* Adaptec AAC series RAID controller driver
* (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
*
* based on the old aacraid driver that is..
* Adaptec aacraid device driver for Linux.
*
* Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Module Name:
* rkt.c
*
* Abstract: Hardware miniport for Drawbridge specific hardware functions.
*
*/
#include <linux/blkdev.h>
#include <scsi/scsi_host.h>
#include "aacraid.h"
#define AAC_NUM_IO_FIB_RKT (246 - AAC_NUM_MGT_FIB)
/**
* aac_rkt_select_comm - Select communications method
* @dev: Adapter
* @comm: communications method
*/
static int aac_rkt_select_comm(struct aac_dev *dev, int comm)
{
int retval;
extern int aac_rx_select_comm(struct aac_dev *dev, int comm);
retval = aac_rx_select_comm(dev, comm);
if (comm == AAC_COMM_MESSAGE) {
/*
* FIB Setup has already been done, but we can minimize the
* damage by at least ensuring the OS never issues more
* commands than we can handle. The Rocket adapters currently
* can only handle 246 commands and 8 AIFs at the same time,
* and in fact do notify us accordingly if we negotiate the
* FIB size. The problem that causes us to add this check is
* to ensure that we do not overdo it with the adapter when a
* hard coded FIB override is being utilized. This special
* case warrants this half baked, but convenient, check here.
*/
if (dev->scsi_host_ptr->can_queue > AAC_NUM_IO_FIB_RKT) {
dev->init->MaxIoCommands =
cpu_to_le32(AAC_NUM_IO_FIB_RKT + AAC_NUM_MGT_FIB);
dev->scsi_host_ptr->can_queue = AAC_NUM_IO_FIB_RKT;
}
}
return retval;
}
/**
* aac_rkt_ioremap
* @size: mapping resize request
*
*/
static int aac_rkt_ioremap(struct aac_dev * dev, u32 size)
{
if (!size) {
iounmap(dev->regs.rkt);
return 0;
}
dev->base = dev->regs.rkt = ioremap(dev->scsi_host_ptr->base, size);
if (dev->base == NULL)
return -1;
dev->IndexRegs = &dev->regs.rkt->IndexRegs;
return 0;
}
/**
* aac_rkt_init - initialize an i960 based AAC card
* @dev: device to configure
*
* Allocate and set up resources for the i960 based AAC variants. The
* device_interface in the commregion will be allocated and linked
* to the comm region.
*/
int aac_rkt_init(struct aac_dev *dev)
{
extern int _aac_rx_init(struct aac_dev *dev);
/*
* Fill in the function dispatch table.
*/
dev->a_ops.adapter_ioremap = aac_rkt_ioremap;
dev->a_ops.adapter_comm = aac_rkt_select_comm;
return _aac_rx_init(dev);
}
|