summaryrefslogtreecommitdiffstats
path: root/lib/zlib_inflate/inflate.c
blob: fceb97c3aff77f96fb7097ee9de6143f44850992 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
/* inflate.c -- zlib decompression
 * Copyright (C) 1995-2005 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h
 *
 * Based on zlib 1.2.3 but modified for the Linux Kernel by
 * Richard Purdie <richard@openedhand.com>
 *
 * Changes mainly for static instead of dynamic memory allocation
 *
 */

#include <linux/zutil.h>
#include "inftrees.h"
#include "inflate.h"
#include "inffast.h"
#include "infutil.h"

int zlib_inflate_workspacesize(void)
{
    return sizeof(struct inflate_workspace);
}

int zlib_inflateReset(z_streamp strm)
{
    struct inflate_state *state;

    if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR;
    state = (struct inflate_state *)strm->state;
    strm->total_in = strm->total_out = state->total = 0;
    strm->msg = NULL;
    strm->adler = 1;        /* to support ill-conceived Java test suite */
    state->mode = HEAD;
    state->last = 0;
    state->havedict = 0;
    state->dmax = 32768U;
    state->hold = 0;
    state->bits = 0;
    state->lencode = state->distcode = state->next = state->codes;

    /* Initialise Window */
    state->wsize = 1U << state->wbits;
    state->write = 0;
    state->whave = 0;

    return Z_OK;
}

#if 0
int zlib_inflatePrime(z_streamp strm, int bits, int value)
{
    struct inflate_state *state;

    if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR;
    state = (struct inflate_state *)strm->state;
    if (bits > 16 || state->bits + bits > 32) return Z_STREAM_ERROR;
    value &= (1L << bits) - 1;
    state->hold += value << state->bits;
    state->bits += bits;
    return Z_OK;
}
#endif

int zlib_inflateInit2(z_streamp strm, int windowBits)
{
    struct inflate_state *state;

    if (strm == NULL) return Z_STREAM_ERROR;
    strm->msg = NULL;                 /* in case we return an error */

    state = &WS(strm)->inflate_state;
    strm->state = (struct internal_state *)state;

    if (windowBits < 0) {
        state->wrap = 0;
        windowBits = -windowBits;
    }
    else {
        state->wrap = (windowBits >> 4) + 1;
    }
    if (windowBits < 8 || windowBits > 15) {
        return Z_STREAM_ERROR;
    }
    state->wbits = (unsigned)windowBits;
    state->window = &WS(strm)->working_window[0];

    return zlib_inflateReset(strm);
}

/*
   Return state with length and distance decoding tables and index sizes set to
   fixed code decoding.  This returns fixed tables from inffixed.h.
 */
static void zlib_fixedtables(struct inflate_state *state)
{
#   include "inffixed.h"
    state->lencode = lenfix;
    state->lenbits = 9;
    state->distcode = distfix;
    state->distbits = 5;
}


/*
   Update the window with the last wsize (normally 32K) bytes written before
   returning. This is only called when a window is already in use, or when
   output has been written during this inflate call, but the end of the deflate
   stream has not been reached yet. It is also called to window dictionary data
   when a dictionary is loaded.

   Providing output buffers larger than 32K to inflate() should provide a speed
   advantage, since only the last 32K of output is copied to the sliding window
   upon return from inflate(), and since all distances after the first 32K of
   output will fall in the output data, making match copies simpler and faster.
   The advantage may be dependent on the size of the processor's data caches.
 */
static void zlib_updatewindow(z_streamp strm, unsigned out)
{
    struct inflate_state *state;
    unsigned copy, dist;

    state = (struct inflate_state *)strm->state;

    /* copy state->wsize or less output bytes into the circular window */
    copy = out - strm->avail_out;
    if (copy >= state->wsize) {
        memcpy(state->window, strm->next_out - state->wsize, state->wsize);
        state->write = 0;
        state->whave = state->wsize;
    }
    else {
        dist = state->wsize - state->write;
        if (dist > copy) dist = copy;
        memcpy(state->window + state->write, strm->next_out - copy, dist);
        copy -= dist;
        if (copy) {
            memcpy(state->window, strm->next_out - copy, copy);
            state->write = copy;
            state->whave = state->wsize;
        }
        else {
            state->write += dist;
            if (state->write == state->wsize) state->write = 0;
            if (state->whave < state->wsize) state->whave += dist;
        }
    }
}


/*
 * At the end of a Deflate-compressed PPP packet, we expect to have seen
 * a `stored' block type value but not the (zero) length bytes.
 */
/*
   Returns true if inflate is currently at the end of a block generated by
   Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
   implementation to provide an additional safety check. PPP uses
   Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored
   block. When decompressing, PPP checks that at the end of input packet,
   inflate is waiting for these length bytes.
 */
static int zlib_inflateSyncPacket(z_streamp strm)
{
    struct inflate_state *state;

    if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR;
    state = (struct inflate_state *)strm->state;

    if (state->mode == STORED && state->bits == 0) {
	state->mode = TYPE;
        return Z_OK;
    }
    return Z_DATA_ERROR;
}

/* Macros for inflate(): */

/* check function to use adler32() for zlib or crc32() for gzip */
#define UPDATE(check, buf, len) zlib_adler32(check, buf, len)

/* Load registers with state in inflate() for speed */
#define LOAD() \
    do { \
        put = strm->next_out; \
        left = strm->avail_out; \
        next = strm->next_in; \
        have = strm->avail_in; \
        hold = state->hold; \
        bits = state->bits; \
    } while (0)

/* Restore state from registers in inflate() */
#define RESTORE() \
    do { \
        strm->next_out = put; \
        strm->avail_out = left; \
        strm->next_in = next; \
        strm->avail_in = have; \
        state->hold = hold; \
        state->bits = bits; \
    } while (0)

/* Clear the input bit accumulator */
#define INITBITS() \
    do { \
        hold = 0; \
        bits = 0; \
    } while (0)

/* Get a byte of input into the bit accumulator, or return from inflate()
   if there is no input available. */
#define PULLBYTE() \
    do { \
        if (have == 0) goto inf_leave; \
        have--; \
        hold += (unsigned long)(*next++) << bits; \
        bits += 8; \
    } while (0)

/* Assure that there are at least n bits in the bit accumulator.  If there is
   not enough available input to do that, then return from inflate(). */
#define NEEDBITS(n) \
    do { \
        while (bits < (unsigned)(n)) \
            PULLBYTE(); \
    } while (0)

/* Return the low n bits of the bit accumulator (n < 16) */
#define BITS(n) \
    ((unsigned)hold & ((1U << (n)) - 1))

/* Remove n bits from the bit accumulator */
#define DROPBITS(n) \
    do { \
        hold >>= (n); \
        bits -= (unsigned)(n); \
    } while (0)

/* Remove zero to seven bits as needed to go to a byte boundary */
#define BYTEBITS() \
    do { \
        hold >>= bits & 7; \
        bits -= bits & 7; \
    } while (0)

/* Reverse the bytes in a 32-bit value */
#define REVERSE(q) \
    ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \
     (((q) & 0xff00) << 8) + (((q) & 0xff) << 24))

/*
   inflate() uses a state machine to process as much input data and generate as
   much output data as possible before returning.  The state machine is
   structured roughly as follows:

    for (;;) switch (state) {
    ...
    case STATEn:
        if (not enough input data or output space to make progress)
            return;
        ... make progress ...
        state = STATEm;
        break;
    ...
    }

   so when inflate() is called again, the same case is attempted again, and
   if the appropriate resources are provided, the machine proceeds to the
   next state.  The NEEDBITS() macro is usually the way the state evaluates
   whether it can proceed or should return.  NEEDBITS() does the return if
   the requested bits are not available.  The typical use of the BITS macros
   is:

        NEEDBITS(n);
        ... do something with BITS(n) ...
        DROPBITS(n);

   where NEEDBITS(n) either returns from inflate() if there isn't enough
   input left to load n bits into the accumulator, or it continues.  BITS(n)
   gives the low n bits in the accumulator.  When done, DROPBITS(n) drops
   the low n bits off the accumulator.  INITBITS() clears the accumulator
   and sets the number of available bits to zero.  BYTEBITS() discards just
   enough bits to put the accumulator on a byte boundary.  After BYTEBITS()
   and a NEEDBITS(8), then BITS(8) would return the next byte in the stream.

   NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return
   if there is no input available.  The decoding of variable length codes uses
   PULLBYTE() directly in order to pull just enough bytes to decode the next
   code, and no more.

   Some states loop until they get enough input, making sure that enough
   state information is maintained to continue the loop where it left off
   if NEEDBITS() returns in the loop.  For example, want, need, and keep
   would all have to actually be part of the saved state in case NEEDBITS()
   returns:

    case STATEw:
        while (want < need) {
            NEEDBITS(n);
            keep[want++] = BITS(n);
            DROPBITS(n);
        }
        state = STATEx;
    case STATEx:

   As shown above, if the next state is also the next case, then the break
   is omitted.

   A state may also return if there is not enough output space available to
   complete that state.  Those states are copying stored data, writing a
   literal byte, and copying a matching string.

   When returning, a "goto inf_leave" is used to update the total counters,
   update the check value, and determine whether any progress has been made
   during that inflate() call in order to return the proper return code.
   Progress is defined as a change in either strm->avail_in or strm->avail_out.
   When there is a window, goto inf_leave will update the window with the last
   output written.  If a goto inf_leave occurs in the middle of decompression
   and there is no window currently, goto inf_leave will create one and copy
   output to the window for the next call of inflate().

   In this implementation, the flush parameter of inflate() only affects the
   return code (per zlib.h).  inflate() always writes as much as possible to
   strm->next_out, given the space available and the provided input--the effect
   documented in zlib.h of Z_SYNC_FLUSH.  Furthermore, inflate() always defers
   the allocation of and copying into a sliding window until necessary, which
   provides the effect documented in zlib.h for Z_FINISH when the entire input
   stream available.  So the only thing the flush parameter actually does is:
   when flush is set to Z_FINISH, inflate() cannot return Z_OK.  Instead it
   will return Z_BUF_ERROR if it has not reached the end of the stream.
 */

int zlib_inflate(z_streamp strm, int flush)
{
    struct inflate_state *state;
    unsigned char *next;    /* next input */
    unsigned char *put;     /* next output */
    unsigned have, left;        /* available input and output */
    unsigned long hold;         /* bit buffer */
    unsigned bits;              /* bits in bit buffer */
    unsigned in, out;           /* save starting available input and output */
    unsigned copy;              /* number of stored or match bytes to copy */
    unsigned char *from;    /* where to copy match bytes from */
    code this;                  /* current decoding table entry */
    code last;                  /* parent table entry */
    unsigned len;               /* length to copy for repeats, bits to drop */
    int ret;                    /* return code */
    static const unsigned short order[19] = /* permutation of code lengths */
        {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};

    /* Do not check for strm->next_out == NULL here as ppc zImage
       inflates to strm->next_out = 0 */

    if (strm == NULL || strm->state == NULL ||
        (strm->next_in == NULL && strm->avail_in != 0))
        return Z_STREAM_ERROR;

    state = (struct inflate_state *)strm->state;

    if (state->mode == TYPE) state->mode = TYPEDO;      /* skip check */
    LOAD();
    in = have;
    out = left;
    ret = Z_OK;
    for (;;)
        switch (state->mode) {
        case HEAD:
            if (state->wrap == 0) {
                state->mode = TYPEDO;
                break;
            }
            NEEDBITS(16);
            if (
                ((BITS(8) << 8) + (hold >> 8)) % 31) {
                strm->msg = (char *)"incorrect header check";
                state->mode = BAD;
                break;
            }
            if (BITS(4) != Z_DEFLATED) {
                strm->msg = (char *)"unknown compression method";
                state->mode = BAD;
                break;
            }
            DROPBITS(4);
            len = BITS(4) + 8;
            if (len > state->wbits) {
                strm->msg = (char *)"invalid window size";
                state->mode = BAD;
                break;
            }
            state->dmax = 1U << len;
            strm->adler = state->check = zlib_adler32(0L, NULL, 0);
            state->mode = hold & 0x200 ? DICTID : TYPE;
            INITBITS();
            break;
        case DICTID:
            NEEDBITS(32);
            strm->adler = state->check = REVERSE(hold);
            INITBITS();
            state->mode = DICT;
        case DICT:
            if (state->havedict == 0) {
                RESTORE();
                return Z_NEED_DICT;
            }
            strm->adler = state->check = zlib_adler32(0L, NULL, 0);
            state->mode = TYPE;
        case TYPE:
            if (flush == Z_BLOCK) goto inf_leave;
        case TYPEDO:
            if (state->last) {
                BYTEBITS();
                state->mode = CHECK;
                break;
            }
            NEEDBITS(3);
            state->last = BITS(1);
            DROPBITS(1);
            switch (BITS(2)) {
            case 0:                             /* stored block */
                state->mode = STORED;
                break;
            case 1:                             /* fixed block */
                zlib_fixedtables(state);
                state->mode = LEN;              /* decode codes */
                break;
            case 2:                             /* dynamic block */
                state->mode = TABLE;
                break;
            case 3:
                strm->msg = (char *)"invalid block type";
                state->mode = BAD;
            }
            DROPBITS(2);
            break;
        case STORED:
            BYTEBITS();                         /* go to byte boundary */
            NEEDBITS(32);
            if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) {
                strm->msg = (char *)"invalid stored block lengths";
                state->mode = BAD;
                break;
            }
            state->length = (unsigned)hold & 0xffff;
            INITBITS();
            state->mode = COPY;
        case COPY:
            copy = state->length;
            if (copy) {
                if (copy > have) copy = have;
                if (copy > left) copy = left;
                if (copy == 0) goto inf_leave;
                memcpy(put, next, copy);
                have -= copy;
                next += copy;
                left -= copy;
                put += copy;
                state->length -= copy;
                break;
            }
            state->mode = TYPE;
            break;
        case TABLE:
            NEEDBITS(14);
            state->nlen = BITS(5) + 257;
            DROPBITS(5);
            state->ndist = BITS(5) + 1;
            DROPBITS(5);
            state->ncode = BITS(4) + 4;
            DROPBITS(4);
#ifndef PKZIP_BUG_WORKAROUND
            if (state->nlen > 286 || state->ndist > 30) {
                strm->msg = (char *)"too many length or distance symbols";
                state->mode = BAD;
                break;
            }
#endif
            state->have = 0;
            state->mode = LENLENS;
        case LENLENS:
            while (state->have < state->ncode) {
                NEEDBITS(3);
                state->lens[order[state->have++]] = (unsigned short)BITS(3);
                DROPBITS(3);
            }
            while (state->have < 19)
                state->lens[order[state->have++]] = 0;
            state->next = state->codes;
            state->lencode = (code const *)(state->next);
            state->lenbits = 7;
            ret = zlib_inflate_table(CODES, state->lens, 19, &(state->next),
                                &(state->lenbits), state->work);
            if (ret) {
                strm->msg = (char *)"invalid code lengths set";
                state->mode = BAD;
                break;
            }
            state->have = 0;
            state->mode = CODELENS;
        case CODELENS:
            while (state->have < state->nlen + state->ndist) {
                for (;;) {
                    this = state->lencode[BITS(state->lenbits)];
                    if ((unsigned)(this.bits) <= bits) break;
                    PULLBYTE();
                }
                if (this.val < 16) {
                    NEEDBITS(this.bits);
                    DROPBITS(this.bits);
                    state->lens[state->have++] = this.val;
                }
                else {
                    if (this.val == 16) {
                        NEEDBITS(this.bits + 2);
                        DROPBITS(this.bits);
                        if (state->have == 0) {
                            strm->msg = (char *)"invalid bit length repeat";
                            state->mode = BAD;
                            break;
                        }
                        len = state->lens[state->have - 1];
                        copy = 3 + BITS(2);
                        DROPBITS(2);
                    }
                    else if (this.val == 17) {
                        NEEDBITS(this.bits + 3);
                        DROPBITS(this.bits);
                        len = 0;
                        copy = 3 + BITS(3);
                        DROPBITS(3);
                    }
                    else {
                        NEEDBITS(this.bits + 7);
                        DROPBITS(this.bits);
                        len = 0;
                        copy = 11 + BITS(7);
                        DROPBITS(7);
                    }
                    if (state->have + copy > state->nlen + state->ndist) {
                        strm->msg = (char *)"invalid bit length repeat";
                        state->mode = BAD;
                        break;
                    }
                    while (copy--)
                        state->lens[state->have++] = (unsigned short)len;
                }
            }

            /* handle error breaks in while */
            if (state->mode == BAD) break;

            /* build code tables */
            state->next = state->codes;
            state->lencode = (code const *)(state->next);
            state->lenbits = 9;
            ret = zlib_inflate_table(LENS, state->lens, state->nlen, &(state->next),
                                &(state->lenbits), state->work);
            if (ret) {
                strm->msg = (char *)"invalid literal/lengths set";
                state->mode = BAD;
                break;
            }
            state->distcode = (code const *)(state->next);
            state->distbits = 6;
            ret = zlib_inflate_table(DISTS, state->lens + state->nlen, state->ndist,
                            &(state->next), &(state->distbits), state->work);
            if (ret) {
                strm->msg = (char *)"invalid distances set";
                state->mode = BAD;
                break;
            }
            state->mode = LEN;
        case LEN:
            if (have >= 6 && left >= 258) {
                RESTORE();
                inflate_fast(strm, out);
                LOAD();
                break;
            }
            for (;;) {
                this = state->lencode[BITS(state->lenbits)];
                if ((unsigned)(this.bits) <= bits) break;
                PULLBYTE();
            }
            if (this.op && (this.op & 0xf0) == 0) {
                last = this;
                for (;;) {
                    this = state->lencode[last.val +
                            (BITS(last.bits + last.op) >> last.bits)];
                    if ((unsigned)(last.bits + this.bits) <= bits) break;
                    PULLBYTE();
                }
                DROPBITS(last.bits);
            }
            DROPBITS(this.bits);
            state->length = (unsigned)this.val;
            if ((int)(this.op) == 0) {
                state->mode = LIT;
                break;
            }
            if (this.op & 32) {
                state->mode = TYPE;
                break;
            }
            if (this.op & 64) {
                strm->msg = (char *)"invalid literal/length code";
                state->mode = BAD;
                break;
            }
            state->extra = (unsigned)(this.op) & 15;
            state->mode = LENEXT;
        case LENEXT:
            if (state->extra) {
                NEEDBITS(state->extra);
                state->length += BITS(state->extra);
                DROPBITS(state->extra);
            }
            state->mode = DIST;
        case DIST:
            for (;;) {
                this = state->distcode[BITS(state->distbits)];
                if ((unsigned)(this.bits) <= bits) break;
                PULLBYTE();
            }
            if ((this.op & 0xf0) == 0) {
                last = this;
                for (;;) {
                    this = state->distcode[last.val +
                            (BITS(last.bits + last.op) >> last.bits)];
                    if ((unsigned)(last.bits + this.bits) <= bits) break;
                    PULLBYTE();
                }
                DROPBITS(last.bits);
            }
            DROPBITS(this.bits);
            if (this.op & 64) {
                strm->msg = (char *)"invalid distance code";
                state->mode = BAD;
                break;
            }
            state->offset = (unsigned)this.val;
            state->extra = (unsigned)(this.op) & 15;
            state->mode = DISTEXT;
        case DISTEXT:
            if (state->extra) {
                NEEDBITS(state->extra);
                state->offset += BITS(state->extra);
                DROPBITS(state->extra);
            }
#ifdef INFLATE_STRICT
            if (state->offset > state->dmax) {
                strm->msg = (char *)"invalid distance too far back";
                state->mode = BAD;
                break;
            }
#endif
            if (state->offset > state->whave + out - left) {
                strm->msg = (char *)"invalid distance too far back";
                state->mode = BAD;
                break;
            }
            state->mode = MATCH;
        case MATCH:
            if (left == 0) goto inf_leave;
            copy = out - left;
            if (state->offset > copy) {         /* copy from window */
                copy = state->offset - copy;
                if (copy > state->write) {
                    copy -= state->write;
                    from = state->window + (state->wsize - copy);
                }
                else
                    from = state->window + (state->write - copy);
                if (copy > state->length) copy = state->length;
            }
            else {                              /* copy from output */
                from = put - state->offset;
                copy = state->length;
            }
            if (copy > left) copy = left;
            left -= copy;
            state->length -= copy;
            do {
                *put++ = *from++;
            } while (--copy);
            if (state->length == 0) state->mode = LEN;
            break;
        case LIT:
            if (left == 0) goto inf_leave;
            *put++ = (unsigned char)(state->length);
            left--;
            state->mode = LEN;
            break;
        case CHECK:
            if (state->wrap) {
                NEEDBITS(32);
                out -= left;
                strm->total_out += out;
                state->total += out;
                if (out)
                    strm->adler = state->check =
                        UPDATE(state->check, put - out, out);
                out = left;
                if ((
                     REVERSE(hold)) != state->check) {
                    strm->msg = (char *)"incorrect data check";
                    state->mode = BAD;
                    break;
                }
                INITBITS();
            }
            state->mode = DONE;
        case DONE:
            ret = Z_STREAM_END;
            goto inf_leave;
        case BAD:
            ret = Z_DATA_ERROR;
            goto inf_leave;
        case MEM:
            return Z_MEM_ERROR;
        case SYNC:
        default:
            return Z_STREAM_ERROR;
        }

    /*
       Return from inflate(), updating the total counts and the check value.
       If there was no progress during the inflate() call, return a buffer
       error.  Call zlib_updatewindow() to create and/or update the window state.
     */
  inf_leave:
    RESTORE();
    if (state->wsize || (state->mode < CHECK && out != strm->avail_out))
        zlib_updatewindow(strm, out);

    in -= strm->avail_in;
    out -= strm->avail_out;
    strm->total_in += in;
    strm->total_out += out;
    state->total += out;
    if (state->wrap && out)
        strm->adler = state->check =
            UPDATE(state->check, strm->next_out - out, out);

    strm->data_type = state->bits + (state->last ? 64 : 0) +
                      (state->mode == TYPE ? 128 : 0);
    if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK)
        ret = Z_BUF_ERROR;

    if (flush == Z_PACKET_FLUSH && ret == Z_OK &&
            (strm->avail_out != 0 || strm->avail_in == 0))
		return zlib_inflateSyncPacket(strm);
    return ret;
}

int zlib_inflateEnd(z_streamp strm)
{
    if (strm == NULL || strm->state == NULL)
        return Z_STREAM_ERROR;
    return Z_OK;
}

#if 0
int zlib_inflateSetDictionary(z_streamp strm, const Byte *dictionary,
        uInt dictLength)
{
    struct inflate_state *state;
    unsigned long id;

    /* check state */
    if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR;
    state = (struct inflate_state *)strm->state;
    if (state->wrap != 0 && state->mode != DICT)
        return Z_STREAM_ERROR;

    /* check for correct dictionary id */
    if (state->mode == DICT) {
        id = zlib_adler32(0L, NULL, 0);
        id = zlib_adler32(id, dictionary, dictLength);
        if (id != state->check)
            return Z_DATA_ERROR;
    }

    /* copy dictionary to window */
    zlib_updatewindow(strm, strm->avail_out);

    if (dictLength > state->wsize) {
        memcpy(state->window, dictionary + dictLength - state->wsize,
                state->wsize);
        state->whave = state->wsize;
    }
    else {
        memcpy(state->window + state->wsize - dictLength, dictionary,
                dictLength);
        state->whave = dictLength;
    }
    state->havedict = 1;
    return Z_OK;
}
#endif

#if 0
/*
   Search buf[0..len-1] for the pattern: 0, 0, 0xff, 0xff.  Return when found
   or when out of input.  When called, *have is the number of pattern bytes
   found in order so far, in 0..3.  On return *have is updated to the new
   state.  If on return *have equals four, then the pattern was found and the
   return value is how many bytes were read including the last byte of the
   pattern.  If *have is less than four, then the pattern has not been found
   yet and the return value is len.  In the latter case, zlib_syncsearch() can be
   called again with more data and the *have state.  *have is initialized to
   zero for the first call.
 */
static unsigned zlib_syncsearch(unsigned *have, unsigned char *buf,
        unsigned len)
{
    unsigned got;
    unsigned next;

    got = *have;
    next = 0;
    while (next < len && got < 4) {
        if ((int)(buf[next]) == (got < 2 ? 0 : 0xff))
            got++;
        else if (buf[next])
            got = 0;
        else
            got = 4 - got;
        next++;
    }
    *have = got;
    return next;
}
#endif

#if 0
int zlib_inflateSync(z_streamp strm)
{
    unsigned len;               /* number of bytes to look at or looked at */
    unsigned long in, out;      /* temporary to save total_in and total_out */
    unsigned char buf[4];       /* to restore bit buffer to byte string */
    struct inflate_state *state;

    /* check parameters */
    if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR;
    state = (struct inflate_state *)strm->state;
    if (strm->avail_in == 0 && state->bits < 8) return Z_BUF_ERROR;

    /* if first time, start search in bit buffer */
    if (state->mode != SYNC) {
        state->mode = SYNC;
        state->hold <<= state->bits & 7;
        state->bits -= state->bits & 7;
        len = 0;
        while (state->bits >= 8) {
            buf[len++] = (unsigned char)(state->hold);
            state->hold >>= 8;
            state->bits -= 8;
        }
        state->have = 0;
        zlib_syncsearch(&(state->have), buf, len);
    }

    /* search available input */
    len = zlib_syncsearch(&(state->have), strm->next_in, strm->avail_in);
    strm->avail_in -= len;
    strm->next_in += len;
    strm->total_in += len;

    /* return no joy or set up to restart inflate() on a new block */
    if (state->have != 4) return Z_DATA_ERROR;
    in = strm->total_in;  out = strm->total_out;
    zlib_inflateReset(strm);
    strm->total_in = in;  strm->total_out = out;
    state->mode = TYPE;
    return Z_OK;
}
#endif

/*
 * This subroutine adds the data at next_in/avail_in to the output history
 * without performing any output.  The output buffer must be "caught up";
 * i.e. no pending output but this should always be the case. The state must
 * be waiting on the start of a block (i.e. mode == TYPE or HEAD).  On exit,
 * the output will also be caught up, and the checksum will have been updated
 * if need be.
 */
int zlib_inflateIncomp(z_stream *z)
{
    struct inflate_state *state = (struct inflate_state *)z->state;
    Byte *saved_no = z->next_out;
    uInt saved_ao = z->avail_out;

    if (state->mode != TYPE && state->mode != HEAD)
	return Z_DATA_ERROR;

    /* Setup some variables to allow misuse of updateWindow */
    z->avail_out = 0;
    z->next_out = z->next_in + z->avail_in;

    zlib_updatewindow(z, z->avail_in);

    /* Restore saved variables */
    z->avail_out = saved_ao;
    z->next_out = saved_no;

    z->adler = state->check =
        UPDATE(state->check, z->next_in, z->avail_in);

    z->total_out += z->avail_in;
    z->total_in += z->avail_in;
    z->next_in += z->avail_in;
    state->total += z->avail_in;
    z->avail_in = 0;

    return Z_OK;
}