1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
|
(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Benedikt Meurer, University of Siegen *)
(* *)
(* Copyright 1998 Institut National de Recherche en Informatique *)
(* et en Automatique. Copyright 2012 Benedikt Meurer. All rights *)
(* reserved. This file is distributed under the terms of the Q *)
(* Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Emission of ARM assembly code *)
open Misc
open Cmm
open Arch
open Proc
open Reg
open Mach
open Linearize
open Emitaux
(* Tradeoff between code size and code speed *)
let fastcode_flag = ref true
(* Output a label *)
let emit_label lbl =
emit_string ".L"; emit_int lbl
let emit_data_label lbl =
emit_string ".Ld"; emit_int lbl
(* Symbols *)
let emit_symbol s =
Emitaux.emit_symbol '$' s
let emit_call s =
if !Clflags.dlcode || !pic_code
then `bl {emit_symbol s}(PLT)`
else `bl {emit_symbol s}`
let emit_jump s =
if !Clflags.dlcode || !pic_code
then `b {emit_symbol s}(PLT)`
else `b {emit_symbol s}`
(* Output a pseudo-register *)
let emit_reg = function
{loc = Reg r} -> emit_string (register_name r)
| _ -> fatal_error "Emit_arm.emit_reg"
(* Layout of the stack frame *)
let stack_offset = ref 0
let frame_size () =
let sz =
!stack_offset +
4 * num_stack_slots.(0) +
8 * num_stack_slots.(1) +
8 * num_stack_slots.(2) +
(if !contains_calls then 4 else 0)
in Misc.align sz 8
let slot_offset loc cl =
match loc with
Incoming n ->
assert (n >= 0);
frame_size() + n
| Local n ->
if cl = 0
then !stack_offset + n * 4
else !stack_offset + num_stack_slots.(0) * 4 + n * 8
| Outgoing n ->
assert (n >= 0);
n
(* Output a stack reference *)
let emit_stack r =
match r.loc with
| Stack s ->
let ofs = slot_offset s (register_class r) in `[sp, #{emit_int ofs}]`
| _ -> fatal_error "Emit_arm.emit_stack"
(* Output an addressing mode *)
let emit_addressing addr r n =
match addr with
Iindexed ofs ->
`[{emit_reg r.(n)}, #{emit_int ofs}]`
(* Record live pointers at call points *)
let record_frame_label live dbg =
let lbl = new_label() in
let live_offset = ref [] in
Reg.Set.iter
(function
{typ = Addr; loc = Reg r} ->
live_offset := ((r lsl 1) + 1) :: !live_offset
| {typ = Addr; loc = Stack s} as reg ->
live_offset := slot_offset s (register_class reg) :: !live_offset
| _ -> ())
live;
frame_descriptors :=
{ fd_lbl = lbl;
fd_frame_size = frame_size();
fd_live_offset = !live_offset;
fd_debuginfo = dbg } :: !frame_descriptors;
lbl
let record_frame live dbg =
let lbl = record_frame_label live dbg in `{emit_label lbl}:`
(* Record calls to the GC -- we've moved them out of the way *)
type gc_call =
{ gc_lbl: label; (* Entry label *)
gc_return_lbl: label; (* Where to branch after GC *)
gc_frame_lbl: label } (* Label of frame descriptor *)
let call_gc_sites = ref ([] : gc_call list)
let emit_call_gc gc =
`{emit_label gc.gc_lbl}: {emit_call "caml_call_gc"}\n`;
`{emit_label gc.gc_frame_lbl}: b {emit_label gc.gc_return_lbl}\n`
(* Record calls to caml_ml_array_bound_error.
In debug mode, we maintain one call to caml_ml_array_bound_error
per bound check site. Otherwise, we can share a single call. *)
type bound_error_call =
{ bd_lbl: label; (* Entry label *)
bd_frame_lbl: label } (* Label of frame descriptor *)
let bound_error_sites = ref ([] : bound_error_call list)
let bound_error_label dbg =
if !Clflags.debug || !bound_error_sites = [] then begin
let lbl_bound_error = new_label() in
let lbl_frame = record_frame_label Reg.Set.empty dbg in
bound_error_sites :=
{ bd_lbl = lbl_bound_error;
bd_frame_lbl = lbl_frame } :: !bound_error_sites;
lbl_bound_error
end else begin
let bd = List.hd !bound_error_sites in bd.bd_lbl
end
let emit_call_bound_error bd =
`{emit_label bd.bd_lbl}: {emit_call "caml_ml_array_bound_error"}\n`;
`{emit_label bd.bd_frame_lbl}:\n`
(* Negate a comparison *)
let negate_integer_comparison = function
Isigned cmp -> Isigned(negate_comparison cmp)
| Iunsigned cmp -> Iunsigned(negate_comparison cmp)
(* Names of various instructions *)
let name_for_comparison = function
Isigned Ceq -> "eq" | Isigned Cne -> "ne" | Isigned Cle -> "le"
| Isigned Cge -> "ge" | Isigned Clt -> "lt" | Isigned Cgt -> "gt"
| Iunsigned Ceq -> "eq" | Iunsigned Cne -> "ne" | Iunsigned Cle -> "ls"
| Iunsigned Cge -> "cs" | Iunsigned Clt -> "cc" | Iunsigned Cgt -> "hi"
let name_for_int_operation = function
Iadd -> "add"
| Isub -> "sub"
| Imul -> "mul"
| Iand -> "and"
| Ior -> "orr"
| Ixor -> "eor"
| _ -> assert false
let name_for_shift_operation = function
Ilsl -> "lsl"
| Ilsr -> "lsr"
| Iasr -> "asr"
| _ -> assert false
(* General functional to decompose a non-immediate integer constant
into 8-bit chunks shifted left 0 ... 30 bits. *)
let decompose_intconst n fn =
let i = ref n in
let shift = ref 0 in
let ninstr = ref 0 in
while !i <> 0l do
if Int32.logand (Int32.shift_right !i !shift) 3l = 0l then
shift := !shift + 2
else begin
let bits = Int32.logand !i (Int32.shift_left 0xffl !shift) in
i := Int32.sub !i bits;
shift := !shift + 8;
incr ninstr;
fn bits
end
done;
!ninstr
(* Load an integer constant into a register *)
let emit_intconst dst n =
let nr = Int32.lognot n in
if is_immediate n then begin
(* Use movs here to enable 16-bit T1 encoding *)
` movs {emit_reg dst}, #{emit_int32 n}\n`; 1
end else if is_immediate nr then begin
` mvn {emit_reg dst}, #{emit_int32 nr}\n`; 1
end else if !arch > ARMv6 then begin
let nl = Int32.logand 0xffffl n in
let nh = Int32.logand 0xffffl (Int32.shift_right_logical n 16) in
if nh = 0l then begin
` movw {emit_reg dst}, #{emit_int32 nl}\n`; 1
end else if Int32.logand nl 0xffl = nl then begin
` movs {emit_reg dst}, #{emit_int32 nl}\n`;
` movt {emit_reg dst}, #{emit_int32 nh}\n`; 2
end else begin
` movw {emit_reg dst}, #{emit_int32 nl}\n`;
` movt {emit_reg dst}, #{emit_int32 nh}\n`; 2
end
end else begin
let first = ref true in
decompose_intconst n
(fun bits ->
if !first
then ` mov {emit_reg dst}, #{emit_int32 bits} @ {emit_int32 n}\n`
else ` add {emit_reg dst}, {emit_reg dst}, #{emit_int32 bits}\n`;
first := false)
end
(* Adjust sp (up or down) by the given byte amount *)
let emit_stack_adjustment n =
if n = 0 then 0 else begin
let instr = if n < 0 then "sub" else "add" in
let ninstr = decompose_intconst (Int32.of_int (abs n))
(fun bits ->
` {emit_string instr} sp, sp, #{emit_int32 bits}\n`) in
cfi_adjust_cfa_offset (-n);
ninstr
end
(* Deallocate the stack frame before a return or tail call *)
let output_epilogue f =
let n = frame_size() in
if n > 0 then begin
let ninstr = emit_stack_adjustment n in
let ninstr = ninstr + f () in
(* reset CFA back cause function body may continue *)
cfi_adjust_cfa_offset n;
ninstr
end else
f ()
(* Name of current function *)
let function_name = ref ""
(* Entry point for tail recursive calls *)
let tailrec_entry_point = ref 0
(* Pending floating-point literals *)
let float_literals = ref ([] : (string * label) list)
(* Pending relative references to the global offset table *)
let gotrel_literals = ref ([] : (label * label) list)
(* Pending symbol literals *)
let symbol_literals = ref ([] : (string * label) list)
(* Total space (in words) occupied by pending literals *)
let num_literals = ref 0
(* Label a floating-point literal *)
let float_literal f =
try
List.assoc f !float_literals
with Not_found ->
let lbl = new_label() in
num_literals := !num_literals + 2;
float_literals := (f, lbl) :: !float_literals;
lbl
(* Label a GOTREL literal *)
let gotrel_literal l =
let lbl = new_label() in
num_literals := !num_literals + 1;
gotrel_literals := (l, lbl) :: !gotrel_literals;
lbl
(* Label a symbol literal *)
let symbol_literal s =
try
List.assoc s !symbol_literals
with Not_found ->
let lbl = new_label() in
num_literals := !num_literals + 1;
symbol_literals := (s, lbl) :: !symbol_literals;
lbl
(* Emit all pending literals *)
let emit_literals() =
if !float_literals <> [] then begin
` .align 3\n`;
List.iter
(fun (f, lbl) ->
`{emit_label lbl}: .double {emit_string f}\n`)
!float_literals;
float_literals := []
end;
if !symbol_literals <> [] then begin
let offset = if !thumb then 4 else 8 in
let suffix = if !pic_code then "(GOT)" else "" in
` .align 2\n`;
List.iter
(fun (l, lbl) ->
`{emit_label lbl}: .word _GLOBAL_OFFSET_TABLE_-({emit_label l}+{emit_int offset})\n`)
!gotrel_literals;
List.iter
(fun (s, lbl) ->
`{emit_label lbl}: .word {emit_symbol s}{emit_string suffix}\n`)
!symbol_literals;
gotrel_literals := [];
symbol_literals := []
end;
num_literals := 0
(* Emit code to load the address of a symbol *)
let emit_load_symbol_addr dst s =
if !pic_code then begin
let lbl_pic = new_label() in
let lbl_got = gotrel_literal lbl_pic in
let lbl_sym = symbol_literal s in
(* Both r3 and r12 are marked as clobbered in PIC mode (cf. proc.ml),
so use r12 as temporary scratch register unless the destination is
r12, then we use r3 instead. *)
let tmp = if dst.loc = Reg 8 (*r12*)
then phys_reg 3 (*r3*)
else phys_reg 8 (*r12*) in
` ldr {emit_reg tmp}, {emit_label lbl_got}\n`;
` ldr {emit_reg dst}, {emit_label lbl_sym}\n`;
`{emit_label lbl_pic}: add {emit_reg tmp}, pc, {emit_reg tmp}\n`;
` ldr {emit_reg dst}, [{emit_reg tmp}, {emit_reg dst}] @ {emit_symbol s}\n`;
4
end else if !arch > ARMv6 && not !Clflags.dlcode && !fastcode_flag then begin
` movw {emit_reg dst}, #:lower16:{emit_symbol s}\n`;
` movt {emit_reg dst}, #:upper16:{emit_symbol s}\n`;
2
end else begin
let lbl = symbol_literal s in
` ldr {emit_reg dst}, {emit_label lbl} @ {emit_symbol s}\n`;
1
end
(* Output the assembly code for an instruction *)
let emit_instr i =
emit_debug_info i.dbg;
match i.desc with
Lend -> 0
| Lop(Imove | Ispill | Ireload) ->
let src = i.arg.(0) and dst = i.res.(0) in
if src.loc = dst.loc then 0 else begin
begin match (src, dst) with
{loc = Reg _; typ = Float}, {loc = Reg _} ->
` fcpyd {emit_reg dst}, {emit_reg src}\n`
| {loc = Reg _}, {loc = Reg _} ->
` mov {emit_reg dst}, {emit_reg src}\n`
| {loc = Reg _; typ = Float}, _ ->
` fstd {emit_reg src}, {emit_stack dst}\n`
| {loc = Reg _}, _ ->
` str {emit_reg src}, {emit_stack dst}\n`
| {typ = Float}, _ ->
` fldd {emit_reg dst}, {emit_stack src}\n`
| _ ->
` ldr {emit_reg dst}, {emit_stack src}\n`
end; 1
end
| Lop(Iconst_int n) ->
emit_intconst i.res.(0) (Nativeint.to_int32 n)
| Lop(Iconst_float f) when !fpu = Soft ->
` @ {emit_string f}\n`;
let bits = Int64.bits_of_float (float_of_string f) in
let high_bits = Int64.to_int32 (Int64.shift_right_logical bits 32)
and low_bits = Int64.to_int32 bits in
if is_immediate low_bits || is_immediate high_bits then begin
let ninstr_low = emit_intconst i.res.(0) low_bits
and ninstr_high = emit_intconst i.res.(1) high_bits in
ninstr_low + ninstr_high
end else begin
let lbl = float_literal f in
` ldr {emit_reg i.res.(0)}, {emit_label lbl}\n`;
` ldr {emit_reg i.res.(1)}, {emit_label lbl} + 4\n`;
2
end
| Lop(Iconst_float f) ->
let encode imm =
let sg = Int64.to_int (Int64.shift_right_logical imm 63) in
let ex = Int64.to_int (Int64.shift_right_logical imm 52) in
let ex = (ex land 0x7ff) - 1023 in
let mn = Int64.logand imm 0xfffffffffffffL in
if Int64.logand mn 0xffffffffffffL <> 0L || ex < -3 || ex > 4
then
None
else begin
let mn = Int64.to_int (Int64.shift_right_logical mn 48) in
if mn land 0x0f <> mn then
None
else
let ex = ((ex + 3) land 0x07) lxor 0x04 in
Some((sg lsl 7) lor (ex lsl 4) lor mn)
end in
begin match encode (Int64.bits_of_float (float_of_string f)) with
None ->
let lbl = float_literal f in
` fldd {emit_reg i.res.(0)}, {emit_label lbl} @ {emit_string f}\n`
| Some imm8 ->
` fconstd {emit_reg i.res.(0)}, #{emit_int imm8} @ {emit_string f}\n`
end; 1
| Lop(Iconst_symbol s) ->
emit_load_symbol_addr i.res.(0) s
| Lop(Icall_ind) ->
if !arch >= ARMv5 then begin
` blx {emit_reg i.arg.(0)}\n`;
`{record_frame i.live i.dbg}\n`; 1
end else begin
` mov lr, pc\n`;
` bx {emit_reg i.arg.(0)}\n`;
`{record_frame i.live i.dbg}\n`; 2
end
| Lop(Icall_imm s) ->
` {emit_call s}\n`;
`{record_frame i.live i.dbg}\n`; 1
| Lop(Itailcall_ind) ->
output_epilogue begin fun () ->
if !contains_calls then
` ldr lr, [sp, #{emit_int (-4)}]\n`;
` bx {emit_reg i.arg.(0)}\n`; 2
end
| Lop(Itailcall_imm s) ->
if s = !function_name then begin
` b {emit_label !tailrec_entry_point}\n`; 1
end else begin
output_epilogue begin fun () ->
if !contains_calls then
` ldr lr, [sp, #{emit_int (-4)}]\n`;
` {emit_jump s}\n`; 2
end
end
| Lop(Iextcall(s, false)) ->
` {emit_call s}\n`; 1
| Lop(Iextcall(s, true)) ->
let ninstr = emit_load_symbol_addr (phys_reg 7 (* r7 *)) s in
` {emit_call "caml_c_call"}\n`;
`{record_frame i.live i.dbg}\n`;
1 + ninstr
| Lop(Istackoffset n) ->
assert (n mod 8 = 0);
let ninstr = emit_stack_adjustment (-n) in
stack_offset := !stack_offset + n;
ninstr
| Lop(Iload(Single, addr)) when !fpu >= VFPv3_D16 ->
` flds s14, {emit_addressing addr i.arg 0}\n`;
` fcvtds {emit_reg i.res.(0)}, s14\n`; 2
| Lop(Iload((Double | Double_u), addr)) when !fpu = Soft ->
(* Use LDM or LDRD if possible *)
begin match i.res.(0), i.res.(1), addr with
{loc = Reg rt}, {loc = Reg rt2}, Iindexed 0
when rt < rt2 ->
` ldm {emit_reg i.arg.(0)}, \{{emit_reg i.res.(0)}, {emit_reg i.res.(1)}}\n`; 1
| {loc = Reg rt}, {loc = Reg rt2}, addr
when !arch >= ARMv5TE && rt mod 2 == 0 && rt2 = rt + 1 ->
` ldrd {emit_reg i.res.(0)}, {emit_reg i.res.(1)}, {emit_addressing addr i.arg 0}\n`; 1
| _ ->
let addr' = offset_addressing addr 4 in
if i.res.(0).loc <> i.arg.(0).loc then begin
` ldr {emit_reg i.res.(0)}, {emit_addressing addr i.arg 0}\n`;
` ldr {emit_reg i.res.(1)}, {emit_addressing addr' i.arg 0}\n`
end else begin
` ldr {emit_reg i.res.(1)}, {emit_addressing addr' i.arg 0}\n`;
` ldr {emit_reg i.res.(0)}, {emit_addressing addr i.arg 0}\n`
end; 2
end
| Lop(Iload(size, addr)) ->
let r = i.res.(0) in
let instr =
match size with
Byte_unsigned -> "ldrb"
| Byte_signed -> "ldrsb"
| Sixteen_unsigned -> "ldrh"
| Sixteen_signed -> "ldrsh"
| Double
| Double_u -> "fldd"
| _ (* 32-bit quantities *) -> "ldr" in
` {emit_string instr} {emit_reg r}, {emit_addressing addr i.arg 0}\n`; 1
| Lop(Istore(Single, addr)) when !fpu >= VFPv3_D16 ->
` fcvtsd s14, {emit_reg i.arg.(0)}\n`;
` fsts s14, {emit_addressing addr i.arg 1}\n`; 2
| Lop(Istore((Double | Double_u), addr)) when !fpu = Soft ->
(* Use STM or STRD if possible *)
begin match i.arg.(0), i.arg.(1), addr with
{loc = Reg rt}, {loc = Reg rt2}, Iindexed 0
when rt < rt2 ->
` stm {emit_reg i.arg.(2)}, \{{emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}}\n`; 1
| {loc = Reg rt}, {loc = Reg rt2}, addr
when !arch >= ARMv5TE && rt mod 2 == 0 && rt2 = rt + 1 ->
` strd {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_addressing addr i.arg 2}\n`; 1
| _ ->
let addr' = offset_addressing addr 4 in
` str {emit_reg i.arg.(0)}, {emit_addressing addr i.arg 2}\n`;
` str {emit_reg i.arg.(1)}, {emit_addressing addr' i.arg 2}\n`; 2
end
| Lop(Istore(size, addr)) ->
let r = i.arg.(0) in
let instr =
match size with
Byte_unsigned
| Byte_signed -> "strb"
| Sixteen_unsigned
| Sixteen_signed -> "strh"
| Double
| Double_u -> "fstd"
| _ (* 32-bit quantities *) -> "str" in
` {emit_string instr} {emit_reg r}, {emit_addressing addr i.arg 1}\n`; 1
| Lop(Ialloc n) ->
let lbl_frame = record_frame_label i.live i.dbg in
if !fastcode_flag then begin
let lbl_redo = new_label() in
`{emit_label lbl_redo}:`;
let ninstr = decompose_intconst
(Int32.of_int n)
(fun i ->
` sub alloc_ptr, alloc_ptr, #{emit_int32 i}\n`) in
` cmp alloc_ptr, alloc_limit\n`;
` add {emit_reg i.res.(0)}, alloc_ptr, #4\n`;
let lbl_call_gc = new_label() in
` bcc {emit_label lbl_call_gc}\n`;
call_gc_sites :=
{ gc_lbl = lbl_call_gc;
gc_return_lbl = lbl_redo;
gc_frame_lbl = lbl_frame } :: !call_gc_sites;
3 + ninstr
end else begin
let ninstr =
begin match n with
8 -> ` {emit_call "caml_alloc1"}\n`; 1
| 12 -> ` {emit_call "caml_alloc2"}\n`; 1
| 16 -> ` {emit_call "caml_alloc3"}\n`; 1
| _ -> let ninstr = emit_intconst (phys_reg 7) (Int32.of_int n) in
` {emit_call "caml_allocN"}\n`; 1 + ninstr
end in
`{emit_label lbl_frame}: add {emit_reg i.res.(0)}, alloc_ptr, #4\n`;
1 + ninstr
end
| Lop(Iintop(Ilsl | Ilsr | Iasr as op)) ->
let shift = name_for_shift_operation op in
` mov {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_string shift} {emit_reg i.arg.(1)}\n`; 1
| Lop(Iintop(Icomp cmp)) ->
let compthen = name_for_comparison cmp in
let compelse = name_for_comparison (negate_integer_comparison cmp) in
` cmp {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
` ite {emit_string compthen}\n`;
` mov{emit_string compthen} {emit_reg i.res.(0)}, #1\n`;
` mov{emit_string compelse} {emit_reg i.res.(0)}, #0\n`; 4
| Lop(Iintop_imm(Icomp cmp, n)) ->
let compthen = name_for_comparison cmp in
let compelse = name_for_comparison (negate_integer_comparison cmp) in
` cmp {emit_reg i.arg.(0)}, #{emit_int n}\n`;
` ite {emit_string compthen}\n`;
` mov{emit_string compthen} {emit_reg i.res.(0)}, #1\n`;
` mov{emit_string compelse} {emit_reg i.res.(0)}, #0\n`; 4
| Lop(Iintop Icheckbound) ->
let lbl = bound_error_label i.dbg in
` cmp {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
` bls {emit_label lbl}\n`; 2
| Lop(Iintop_imm(Icheckbound, n)) ->
let lbl = bound_error_label i.dbg in
` cmp {emit_reg i.arg.(0)}, #{emit_int n}\n`;
` bls {emit_label lbl}\n`; 2
| Lop(Ispecific(Ishiftcheckbound shift)) ->
let lbl = bound_error_label i.dbg in
` cmp {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}, lsr #{emit_int shift}\n`;
` bcs {emit_label lbl}\n`; 2
| Lop(Iintop op) ->
let instr = name_for_int_operation op in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`; 1
| Lop(Iintop_imm(Idiv, n)) -> (* n is a power of 2 *)
let l = Misc.log2 n in
let r = i.res.(0) in
` movs {emit_reg r}, {emit_reg i.arg.(0)}\n`;
if n <= 256 then begin
` it lt\n`;
` addlt {emit_reg r}, {emit_reg r}, #{emit_int (n-1)}\n`
end else begin
` itt lt\n`;
` addlt {emit_reg r}, {emit_reg r}, #{emit_int n}\n`;
` sublt {emit_reg r}, {emit_reg r}, #1\n`
end;
` mov {emit_reg r}, {emit_reg r}, asr #{emit_int l}\n`; 5
| Lop(Iintop_imm(Imod, n)) -> (* n is a power of 2 *)
let l = Misc.log2 n in
let a = i.arg.(0) in
let r = i.res.(0) in
let lbl = new_label() in
` cmp {emit_reg a}, #0\n`;
` mov {emit_reg r}, {emit_reg a}, lsl #{emit_int (32-l)}\n`;
` mov {emit_reg r}, {emit_reg r}, lsr #{emit_int (32-l)}\n`;
` bpl {emit_label lbl}\n`;
` cmp {emit_reg r}, #0\n`;
` it ne\n`;
` subne {emit_reg r}, {emit_reg r}, #{emit_int n}\n`;
`{emit_label lbl}:\n`; 7
| Lop(Iintop_imm((Ilsl | Ilsr | Iasr as op), n)) ->
let shift = name_for_shift_operation op in
` mov {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_string shift} #{emit_int n}\n`; 1
| Lop(Iintop_imm(op, n)) ->
let instr = name_for_int_operation op in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, #{emit_int n}\n`; 1
| Lop(Iabsf | Inegf as op) when !fpu = Soft ->
let instr = (match op with
Iabsf -> "bic"
| Inegf -> "eor"
| _ -> assert false) in
` {emit_string instr} {emit_reg i.res.(1)}, {emit_reg i.arg.(1)}, #0x80000000\n`; 1
| Lop(Iabsf | Inegf | Ispecific Isqrtf as op) ->
let instr = (match op with
Iabsf -> "fabsd"
| Inegf -> "fnegd"
| Ispecific Isqrtf -> "fsqrtd"
| _ -> assert false) in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}\n`; 1
| Lop(Ifloatofint) ->
` fmsr s14, {emit_reg i.arg.(0)}\n`;
` fsitod {emit_reg i.res.(0)}, s14\n`; 2
| Lop(Iintoffloat) ->
` ftosizd s14, {emit_reg i.arg.(0)}\n`;
` fmrs {emit_reg i.res.(0)}, s14\n`; 2
| Lop(Iaddf | Isubf | Imulf | Idivf | Ispecific Inegmulf as op) ->
let instr = (match op with
Iaddf -> "faddd"
| Isubf -> "fsubd"
| Imulf -> "fmuld"
| Idivf -> "fdivd"
| Ispecific Inegmulf -> "fnmuld"
| _ -> assert false) in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
1
| Lop(Ispecific(Imuladdf | Inegmuladdf | Imulsubf | Inegmulsubf as op)) ->
let instr = (match op with
Imuladdf -> "fmacd"
| Inegmuladdf -> "fnmacd"
| Imulsubf -> "fmscd"
| Inegmulsubf -> "fnmscd"
| _ -> assert false) in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.arg.(2)}\n`;
1
| Lop(Ispecific(Ishiftarith(op, shift))) ->
let instr = (match op with
Ishiftadd -> "add"
| Ishiftsub -> "sub"
| Ishiftsubrev -> "rsb") in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}`;
if shift >= 0
then `, lsl #{emit_int shift}\n`
else `, asr #{emit_int (-shift)}\n`;
1
| Lop(Ispecific(Irevsubimm n)) ->
` rsb {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, #{emit_int n}\n`; 1
| Lop(Ispecific(Imuladd | Imulsub as op)) ->
let instr = (match op with
Imuladd -> "mla"
| Imulsub -> "mls"
| _ -> assert false) in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.arg.(2)}\n`; 1
| Lreloadretaddr ->
let n = frame_size() in
` ldr lr, [sp, #{emit_int(n-4)}]\n`; 1
| Lreturn ->
output_epilogue begin fun () ->
` bx lr\n`; 1
end
| Llabel lbl ->
`{emit_label lbl}:\n`; 0
| Lbranch lbl ->
` b {emit_label lbl}\n`; 1
| Lcondbranch(tst, lbl) ->
begin match tst with
Itruetest ->
` cmp {emit_reg i.arg.(0)}, #0\n`;
` bne {emit_label lbl}\n`; 2
| Ifalsetest ->
` cmp {emit_reg i.arg.(0)}, #0\n`;
` beq {emit_label lbl}\n`; 2
| Iinttest cmp ->
` cmp {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
let comp = name_for_comparison cmp in
` b{emit_string comp} {emit_label lbl}\n`; 2
| Iinttest_imm(cmp, n) ->
` cmp {emit_reg i.arg.(0)}, #{emit_int n}\n`;
let comp = name_for_comparison cmp in
` b{emit_string comp} {emit_label lbl}\n`; 2
| Ifloattest(cmp, neg) ->
let comp = (match (cmp, neg) with
(Ceq, false) | (Cne, true) -> "eq"
| (Cne, false) | (Ceq, true) -> "ne"
| (Clt, false) -> "cc"
| (Clt, true) -> "cs"
| (Cle, false) -> "ls"
| (Cle, true) -> "hi"
| (Cgt, false) -> "gt"
| (Cgt, true) -> "le"
| (Cge, false) -> "ge"
| (Cge, true) -> "lt") in
` fcmpd {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
` fmstat\n`;
` b{emit_string comp} {emit_label lbl}\n`; 3
| Ioddtest ->
` tst {emit_reg i.arg.(0)}, #1\n`;
` bne {emit_label lbl}\n`; 2
| Ieventest ->
` tst {emit_reg i.arg.(0)}, #1\n`;
` beq {emit_label lbl}\n`; 2
end
| Lcondbranch3(lbl0, lbl1, lbl2) ->
` cmp {emit_reg i.arg.(0)}, #1\n`;
begin match lbl0 with
None -> ()
| Some lbl -> ` blt {emit_label lbl}\n`
end;
begin match lbl1 with
None -> ()
| Some lbl -> ` beq {emit_label lbl}\n`
end;
begin match lbl2 with
None -> ()
| Some lbl -> ` bgt {emit_label lbl}\n`
end;
4
| Lswitch jumptbl ->
if !arch > ARMv6 && !thumb then begin
(* The Thumb-2 TBH instruction supports only forward branches,
so we need to generate appropriate trampolines for all labels
that appear before this switch instruction (PR#5623) *)
let tramtbl = Array.copy jumptbl in
` tbh [pc, {emit_reg i.arg.(0)}, lsl #1]\n`;
for j = 0 to Array.length tramtbl - 1 do
let rec label i =
match i.desc with
Lend -> new_label()
| Llabel lbl when lbl = tramtbl.(j) -> lbl
| _ -> label i.next in
tramtbl.(j) <- label i.next;
` .short ({emit_label tramtbl.(j)}-.)/2+{emit_int j}\n`
done;
(* Generate the necessary trampolines *)
for j = 0 to Array.length tramtbl - 1 do
if tramtbl.(j) <> jumptbl.(j) then
`{emit_label tramtbl.(j)}: b {emit_label jumptbl.(j)}\n`
done
end else if not !pic_code then begin
` ldr pc, [pc, {emit_reg i.arg.(0)}, lsl #2]\n`;
` nop\n`;
for j = 0 to Array.length jumptbl - 1 do
` .word {emit_label jumptbl.(j)}\n`
done
end else begin
(* Slightly slower, but position-independent *)
` add pc, pc, {emit_reg i.arg.(0)}, lsl #2\n`;
` nop\n`;
for j = 0 to Array.length jumptbl - 1 do
` b {emit_label jumptbl.(j)}\n`
done
end;
2 + Array.length jumptbl
| Lsetuptrap lbl ->
` bl {emit_label lbl}\n`; 1
| Lpushtrap ->
stack_offset := !stack_offset + 8;
` push \{trap_ptr, lr}\n`;
cfi_adjust_cfa_offset 8;
` mov trap_ptr, sp\n`; 2
| Lpoptrap ->
` pop \{trap_ptr, lr}\n`;
cfi_adjust_cfa_offset (-8);
stack_offset := !stack_offset - 8; 1
| Lraise ->
if !Clflags.debug then begin
` {emit_call "caml_raise_exn"}\n`;
`{record_frame Reg.Set.empty i.dbg}\n`; 1
end else begin
` mov sp, trap_ptr\n`;
` pop \{trap_ptr, pc}\n`; 2
end
(* Emission of an instruction sequence *)
let rec emit_all ninstr i =
if i.desc = Lend then () else begin
let n = emit_instr i in
let ninstr' = ninstr + n in
(* fldd can address up to +/-1KB, ldr can address up to +/-4KB *)
let limit = (if !fpu >= VFPv3_D16 && !float_literals <> []
then 127
else 511) in
let limit = limit - !num_literals in
if ninstr' >= limit - 64 && not(has_fallthrough i.desc) then begin
emit_literals();
emit_all 0 i.next
end else if !num_literals != 0 && ninstr' >= limit then begin
let lbl = new_label() in
` b {emit_label lbl}\n`;
emit_literals();
`{emit_label lbl}:\n`;
emit_all 0 i.next
end else
emit_all ninstr' i.next
end
(* Emission of the profiling prelude *)
let emit_profile() =
match Config.system with
"linux_eabi" | "linux_eabihf" ->
` push \{lr}\n`;
` {emit_call "__gnu_mcount_nc"}\n`
| _ -> ()
(* Emission of a function declaration *)
let fundecl fundecl =
function_name := fundecl.fun_name;
fastcode_flag := fundecl.fun_fast;
tailrec_entry_point := new_label();
float_literals := [];
gotrel_literals := [];
symbol_literals := [];
stack_offset := 0;
call_gc_sites := [];
bound_error_sites := [];
` .text\n`;
` .align 2\n`;
` .globl {emit_symbol fundecl.fun_name}\n`;
if !arch > ARMv6 && !thumb then
` .thumb\n`
else
` .arm\n`;
` .type {emit_symbol fundecl.fun_name}, %function\n`;
`{emit_symbol fundecl.fun_name}:\n`;
emit_debug_info fundecl.fun_dbg;
cfi_startproc();
if !Clflags.gprofile then emit_profile();
let n = frame_size() in
if n > 0 then begin
ignore(emit_stack_adjustment (-n));
if !contains_calls then
` str lr, [sp, #{emit_int(n - 4)}]\n`
end;
`{emit_label !tailrec_entry_point}:\n`;
emit_all 0 fundecl.fun_body;
emit_literals();
List.iter emit_call_gc !call_gc_sites;
List.iter emit_call_bound_error !bound_error_sites;
cfi_endproc();
` .type {emit_symbol fundecl.fun_name}, %function\n`;
` .size {emit_symbol fundecl.fun_name}, .-{emit_symbol fundecl.fun_name}\n`
(* Emission of data *)
let emit_item = function
Cglobal_symbol s -> ` .globl {emit_symbol s}\n`;
| Cdefine_symbol s -> `{emit_symbol s}:\n`
| Cdefine_label lbl -> `{emit_data_label lbl}:\n`
| Cint8 n -> ` .byte {emit_int n}\n`
| Cint16 n -> ` .short {emit_int n}\n`
| Cint32 n -> ` .long {emit_int32 (Nativeint.to_int32 n)}\n`
| Cint n -> ` .long {emit_int32 (Nativeint.to_int32 n)}\n`
| Csingle f -> ` .single {emit_string f}\n`
| Cdouble f -> ` .double {emit_string f}\n`
| Csymbol_address s -> ` .word {emit_symbol s}\n`
| Clabel_address lbl -> ` .word {emit_data_label lbl}\n`
| Cstring s -> emit_string_directive " .ascii " s
| Cskip n -> if n > 0 then ` .space {emit_int n}\n`
| Calign n -> ` .align {emit_int(Misc.log2 n)}\n`
let data l =
` .data\n`;
List.iter emit_item l
(* Beginning / end of an assembly file *)
let begin_assembly() =
reset_debug_info();
` .syntax unified\n`;
begin match !arch with
| ARMv4 -> ` .arch armv4t\n`
| ARMv5 -> ` .arch armv5t\n`
| ARMv5TE -> ` .arch armv5te\n`
| ARMv6 -> ` .arch armv6\n`
| ARMv6T2 -> ` .arch armv6t2\n`
| ARMv7 -> ` .arch armv7-a\n`
end;
begin match !fpu with
Soft -> ` .fpu softvfp\n`
| VFPv3_D16 -> ` .fpu vfpv3-d16\n`
| VFPv3 -> ` .fpu vfpv3\n`
end;
`trap_ptr .req r8\n`;
`alloc_ptr .req r10\n`;
`alloc_limit .req r11\n`;
let lbl_begin = Compilenv.make_symbol (Some "data_begin") in
` .data\n`;
` .globl {emit_symbol lbl_begin}\n`;
`{emit_symbol lbl_begin}:\n`;
let lbl_begin = Compilenv.make_symbol (Some "code_begin") in
` .text\n`;
` .globl {emit_symbol lbl_begin}\n`;
`{emit_symbol lbl_begin}:\n`
let end_assembly () =
let lbl_end = Compilenv.make_symbol (Some "code_end") in
` .text\n`;
` .globl {emit_symbol lbl_end}\n`;
`{emit_symbol lbl_end}:\n`;
let lbl_end = Compilenv.make_symbol (Some "data_end") in
` .data\n`;
` .globl {emit_symbol lbl_end}\n`;
`{emit_symbol lbl_end}:\n`;
` .long 0\n`;
let lbl = Compilenv.make_symbol (Some "frametable") in
` .globl {emit_symbol lbl}\n`;
`{emit_symbol lbl}:\n`;
emit_frames
{ efa_label = (fun lbl ->
` .type {emit_label lbl}, %function\n`;
` .word {emit_label lbl}\n`);
efa_16 = (fun n -> ` .short {emit_int n}\n`);
efa_32 = (fun n -> ` .long {emit_int32 n}\n`);
efa_word = (fun n -> ` .word {emit_int n}\n`);
efa_align = (fun n -> ` .align {emit_int(Misc.log2 n)}\n`);
efa_label_rel = (fun lbl ofs ->
` .word {emit_label lbl} - . + {emit_int32 ofs}\n`);
efa_def_label = (fun lbl -> `{emit_label lbl}:\n`);
efa_string = (fun s -> emit_string_directive " .asciz " s) };
` .type {emit_symbol lbl}, %object\n`;
` .size {emit_symbol lbl}, .-{emit_symbol lbl}\n`;
begin match Config.system with
"linux_eabihf" | "linux_eabi" ->
(* Mark stack as non-executable *)
` .section .note.GNU-stack,\"\",%progbits\n`
| _ -> ()
end
|