1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
|
(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* Emission of PowerPC assembly code *)
module StringSet = Set.Make(struct type t = string let compare = compare end)
open Location
open Misc
open Cmm
open Arch
open Proc
open Reg
open Mach
open Linearize
open Emitaux
(* Layout of the stack. The stack is kept 16-aligned. *)
let stack_offset = ref 0
let frame_size () =
let size =
!stack_offset + (* Trap frame, outgoing parameters *)
size_int * num_stack_slots.(0) + (* Local int variables *)
size_float * num_stack_slots.(1) + (* Local float variables *)
(if !contains_calls then size_int else 0) in (* The return address *)
Misc.align size 16
let slot_offset loc cls =
match loc with
Local n ->
if cls = 0
then !stack_offset + num_stack_slots.(1) * size_float + n * size_int
else !stack_offset + n * size_float
| Incoming n -> frame_size() + n
| Outgoing n -> n
(* Whether stack backtraces are supported *)
let supports_backtraces =
match Config.system with
| "rhapsody" -> true
| _ -> false
(* Output a symbol *)
let emit_symbol =
match Config.system with
| "elf" | "bsd" -> (fun s -> Emitaux.emit_symbol '.' s)
| "rhapsody" -> (fun s -> emit_char '_'; Emitaux.emit_symbol '$' s)
| _ -> assert false
(* Output a label *)
let label_prefix =
match Config.system with
| "elf" | "bsd" -> ".L"
| "rhapsody" -> "L"
| _ -> assert false
let emit_label lbl =
emit_string label_prefix; emit_int lbl
let emit_data_label lbl =
emit_string label_prefix; emit_string "d"; emit_int lbl
(* Section switching *)
let data_space =
match Config.system with
| "elf" | "bsd" -> " .section \".data\"\n"
| "rhapsody" -> " .data\n"
| _ -> assert false
let code_space =
match Config.system with
| "elf" | "bsd" -> " .section \".text\"\n"
| "rhapsody" -> " .text\n"
| _ -> assert false
let rodata_space =
match Config.system with
| "elf" | "bsd" -> " .section \".rodata\"\n"
| "rhapsody" -> " .const\n"
| _ -> assert false
(* Names of instructions that differ in 32 and 64-bit modes *)
let lg = if ppc64 then "ld" else "lwz"
let stg = if ppc64 then "std" else "stw"
let lwa = if ppc64 then "lwa" else "lwz"
let cmpg = if ppc64 then "cmpd" else "cmpw"
let cmplg = if ppc64 then "cmpld" else "cmplw"
let datag = if ppc64 then ".quad" else ".long"
let aligng = if ppc64 then 3 else 2
let mullg = if ppc64 then "mulld" else "mullw"
let divg = if ppc64 then "divd" else "divw"
let tglle = if ppc64 then "tdlle" else "twlle"
let sragi = if ppc64 then "sradi" else "srawi"
let slgi = if ppc64 then "sldi" else "slwi"
let fctigz = if ppc64 then "fctidz" else "fctiwz"
(* Output a pseudo-register *)
let emit_reg r =
match r.loc with
Reg r -> emit_string (register_name r)
| _ -> fatal_error "Emit.emit_reg"
let use_full_regnames =
Config.system = "rhapsody"
let emit_gpr r =
if use_full_regnames then emit_char 'r';
emit_int r
let emit_fpr r =
if use_full_regnames then emit_char 'f';
emit_int r
let emit_ccr r =
if use_full_regnames then emit_string "cr";
emit_int r
(* Output a stack reference *)
let emit_stack r =
match r.loc with
Stack s ->
let ofs = slot_offset s (register_class r) in `{emit_int ofs}({emit_gpr 1})`
| _ -> fatal_error "Emit.emit_stack"
(* Split a 32-bit integer constants in two 16-bit halves *)
let low n = n land 0xFFFF
let high n = n asr 16
let nativelow n = Nativeint.to_int n land 0xFFFF
let nativehigh n = Nativeint.to_int (Nativeint.shift_right n 16)
let is_immediate n =
n <= 32767 && n >= -32768
let is_native_immediate n =
n <= 32767n && n >= -32768n
(* Output a "upper 16 bits" or "lower 16 bits" operator. *)
let emit_upper emit_fun arg =
match Config.system with
| "elf" | "bsd" ->
emit_fun arg; emit_string "@ha"
| "rhapsody" ->
emit_string "ha16("; emit_fun arg; emit_string ")"
| _ -> assert false
let emit_lower emit_fun arg =
match Config.system with
| "elf" | "bsd" ->
emit_fun arg; emit_string "@l"
| "rhapsody" ->
emit_string "lo16("; emit_fun arg; emit_string ")"
| _ -> assert false
(* Output a load or store operation *)
let emit_symbol_offset (s, d) =
emit_symbol s;
if d > 0 then `+`;
if d <> 0 then emit_int d
let valid_offset instr ofs =
ofs land 3 = 0 || (instr <> "ld" && instr <> "std")
let emit_load_store instr addressing_mode addr n arg =
match addressing_mode with
Ibased(s, d) ->
` addis {emit_gpr 11}, 0, {emit_upper emit_symbol_offset (s,d)}\n`;
` {emit_string instr} {emit_reg arg}, {emit_lower emit_symbol_offset (s,d)}({emit_gpr 11})\n`
| Iindexed ofs ->
if is_immediate ofs && valid_offset instr ofs then
` {emit_string instr} {emit_reg arg}, {emit_int ofs}({emit_reg addr.(n)})\n`
else begin
` lis {emit_gpr 0}, {emit_int(high ofs)}\n`;
if low ofs <> 0 then
` ori {emit_gpr 0}, {emit_gpr 0}, {emit_int(low ofs)}\n`;
` {emit_string instr}x {emit_reg arg}, {emit_reg addr.(n)}, {emit_gpr 0}\n`
end
| Iindexed2 ->
` {emit_string instr}x {emit_reg arg}, {emit_reg addr.(n)}, {emit_reg addr.(n+1)}\n`
(* After a comparison, extract the result as 0 or 1 *)
let emit_set_comp cmp res =
` mfcr {emit_gpr 0}\n`;
let bitnum =
match cmp with
Ceq | Cne -> 2
| Cgt | Cle -> 1
| Clt | Cge -> 0 in
` rlwinm {emit_reg res}, {emit_gpr 0}, {emit_int(bitnum+1)}, 31, 31\n`;
begin match cmp with
Cne | Cle | Cge -> ` xori {emit_reg res}, {emit_reg res}, 1\n`
| _ -> ()
end
(* Record live pointers at call points *)
let record_frame live dbg =
let lbl = new_label() in
let live_offset = ref [] in
Reg.Set.iter
(function
{typ = Addr; loc = Reg r} ->
live_offset := (r lsl 1) + 1 :: !live_offset
| {typ = Addr; loc = Stack s} as reg ->
live_offset := slot_offset s (register_class reg) :: !live_offset
| _ -> ())
live;
frame_descriptors :=
{ fd_lbl = lbl;
fd_frame_size = frame_size();
fd_live_offset = !live_offset;
fd_debuginfo = dbg } :: !frame_descriptors;
`{emit_label lbl}:\n`
(* Record floating-point and large integer literals *)
let float_literals = ref ([] : (string * int) list)
let int_literals = ref ([] : (nativeint * int) list)
(* Record external C functions to be called in a position-independent way
(for MacOSX) *)
let pic_externals = (Config.system = "rhapsody")
let external_functions = ref StringSet.empty
let emit_external s =
` .non_lazy_symbol_pointer\n`;
`L{emit_symbol s}$non_lazy_ptr:\n`;
` .indirect_symbol {emit_symbol s}\n`;
` {emit_string datag} 0\n`
(* Names for conditional branches after comparisons *)
let branch_for_comparison = function
Ceq -> "beq" | Cne -> "bne"
| Cle -> "ble" | Cgt -> "bgt"
| Cge -> "bge" | Clt -> "blt"
let name_for_int_comparison = function
Isigned cmp -> (cmpg, branch_for_comparison cmp)
| Iunsigned cmp -> (cmplg, branch_for_comparison cmp)
(* Names for various instructions *)
let name_for_intop = function
Iadd -> "add"
| Imul -> if ppc64 then "mulld" else "mullw"
| Idiv -> if ppc64 then "divd" else "divw"
| Iand -> "and"
| Ior -> "or"
| Ixor -> "xor"
| Ilsl -> if ppc64 then "sld" else "slw"
| Ilsr -> if ppc64 then "srd" else "srw"
| Iasr -> if ppc64 then "srad" else "sraw"
| _ -> Misc.fatal_error "Emit.Intop"
let name_for_intop_imm = function
Iadd -> "addi"
| Imul -> "mulli"
| Iand -> "andi."
| Ior -> "ori"
| Ixor -> "xori"
| Ilsl -> if ppc64 then "sldi" else "slwi"
| Ilsr -> if ppc64 then "srdi" else "srwi"
| Iasr -> if ppc64 then "sradi" else "srawi"
| _ -> Misc.fatal_error "Emit.Intop_imm"
let name_for_floatop1 = function
Inegf -> "fneg"
| Iabsf -> "fabs"
| _ -> Misc.fatal_error "Emit.Iopf1"
let name_for_floatop2 = function
Iaddf -> "fadd"
| Isubf -> "fsub"
| Imulf -> "fmul"
| Idivf -> "fdiv"
| _ -> Misc.fatal_error "Emit.Iopf2"
let name_for_specific = function
Imultaddf -> "fmadd"
| Imultsubf -> "fmsub"
| _ -> Misc.fatal_error "Emit.Ispecific"
(* Name of current function *)
let function_name = ref ""
(* Entry point for tail recursive calls *)
let tailrec_entry_point = ref 0
(* Names of functions defined in the current file *)
let defined_functions = ref StringSet.empty
(* Label of glue code for calling the GC *)
let call_gc_label = ref 0
(* Fixup conditional branches that exceed hardware allowed range *)
let load_store_size = function
Ibased(s, d) -> 2
| Iindexed ofs -> if is_immediate ofs then 1 else 3
| Iindexed2 -> 1
let instr_size = function
Lend -> 0
| Lop(Imove | Ispill | Ireload) -> 1
| Lop(Iconst_int n) -> if is_native_immediate n then 1 else 2
| Lop(Iconst_float s) -> 2
| Lop(Iconst_symbol s) -> 2
| Lop(Icall_ind) -> 2
| Lop(Icall_imm s) -> 1
| Lop(Itailcall_ind) -> 5
| Lop(Itailcall_imm s) -> if s = !function_name then 1 else 4
| Lop(Iextcall(s, true)) -> 3
| Lop(Iextcall(s, false)) -> if pic_externals then 4 else 1
| Lop(Istackoffset n) -> 1
| Lop(Iload(chunk, addr)) ->
if chunk = Byte_signed
then load_store_size addr + 1
else load_store_size addr
| Lop(Istore(chunk, addr)) -> load_store_size addr
| Lop(Ialloc n) -> 4
| Lop(Ispecific(Ialloc_far n)) -> 5
| Lop(Iintop Imod) -> 3
| Lop(Iintop(Icomp cmp)) -> 4
| Lop(Iintop op) -> 1
| Lop(Iintop_imm(Idiv, n)) -> 2
| Lop(Iintop_imm(Imod, n)) -> 4
| Lop(Iintop_imm(Icomp cmp, n)) -> 4
| Lop(Iintop_imm(op, n)) -> 1
| Lop(Inegf | Iabsf | Iaddf | Isubf | Imulf | Idivf) -> 1
| Lop(Ifloatofint) -> 9
| Lop(Iintoffloat) -> 4
| Lop(Ispecific sop) -> 1
| Lreloadretaddr -> 2
| Lreturn -> 2
| Llabel lbl -> 0
| Lbranch lbl -> 1
| Lcondbranch(tst, lbl) -> 2
| Lcondbranch3(lbl0, lbl1, lbl2) ->
1 + (if lbl0 = None then 0 else 1)
+ (if lbl1 = None then 0 else 1)
+ (if lbl2 = None then 0 else 1)
| Lswitch jumptbl -> 8
| Lsetuptrap lbl -> 1
| Lpushtrap -> 4
| Lpoptrap -> 2
| Lraise -> 6
let label_map code =
let map = Hashtbl.create 37 in
let rec fill_map pc instr =
match instr.desc with
Lend -> (pc, map)
| Llabel lbl -> Hashtbl.add map lbl pc; fill_map pc instr.next
| op -> fill_map (pc + instr_size op) instr.next
in fill_map 0 code
let max_branch_offset = 8180
(* 14-bit signed offset in words. Remember to cut some slack
for multi-word instructions where the branch can be anywhere in
the middle. 12 words of slack is plenty. *)
let branch_overflows map pc_branch lbl_dest =
let pc_dest = Hashtbl.find map lbl_dest in
let delta = pc_dest - (pc_branch + 1) in
delta <= -max_branch_offset || delta >= max_branch_offset
let opt_branch_overflows map pc_branch opt_lbl_dest =
match opt_lbl_dest with
None -> false
| Some lbl_dest -> branch_overflows map pc_branch lbl_dest
let fixup_branches codesize map code =
let expand_optbranch lbl n arg next =
match lbl with
None -> next
| Some l ->
instr_cons (Lcondbranch(Iinttest_imm(Isigned Ceq, n), l))
arg [||] next in
let rec fixup did_fix pc instr =
match instr.desc with
Lend -> did_fix
| Lcondbranch(test, lbl) when branch_overflows map pc lbl ->
let lbl2 = new_label() in
let cont =
instr_cons (Lbranch lbl) [||] [||]
(instr_cons (Llabel lbl2) [||] [||] instr.next) in
instr.desc <- Lcondbranch(invert_test test, lbl2);
instr.next <- cont;
fixup true (pc + 2) instr.next
| Lcondbranch3(lbl0, lbl1, lbl2)
when opt_branch_overflows map pc lbl0
|| opt_branch_overflows map pc lbl1
|| opt_branch_overflows map pc lbl2 ->
let cont =
expand_optbranch lbl0 0 instr.arg
(expand_optbranch lbl1 1 instr.arg
(expand_optbranch lbl2 2 instr.arg instr.next)) in
instr.desc <- cont.desc;
instr.next <- cont.next;
fixup true pc instr
| Lop(Ialloc n) when codesize - pc >= max_branch_offset ->
instr.desc <- Lop(Ispecific(Ialloc_far n));
fixup true (pc + 4) instr.next
| op ->
fixup did_fix (pc + instr_size op) instr.next
in fixup false 0 code
(* Iterate branch expansion till all conditional branches are OK *)
let rec branch_normalization code =
let (codesize, map) = label_map code in
if codesize >= max_branch_offset && fixup_branches codesize map code
then branch_normalization code
else ()
(* Output the assembly code for an instruction *)
let rec emit_instr i dslot =
match i.desc with
Lend -> ()
| Lop(Imove | Ispill | Ireload) ->
let src = i.arg.(0) and dst = i.res.(0) in
if src.loc <> dst.loc then begin
match (src, dst) with
{loc = Reg rs; typ = (Int | Addr)}, {loc = Reg rd} ->
` mr {emit_reg dst}, {emit_reg src}\n`
| {loc = Reg rs; typ = Float}, {loc = Reg rd; typ = Float} ->
` fmr {emit_reg dst}, {emit_reg src}\n`
| {loc = Reg rs; typ = (Int | Addr)}, {loc = Stack sd} ->
` {emit_string stg} {emit_reg src}, {emit_stack dst}\n`
| {loc = Reg rs; typ = Float}, {loc = Stack sd} ->
` stfd {emit_reg src}, {emit_stack dst}\n`
| {loc = Stack ss; typ = (Int | Addr)}, {loc = Reg rd} ->
` {emit_string lg} {emit_reg dst}, {emit_stack src}\n`
| {loc = Stack ss; typ = Float}, {loc = Reg rd} ->
` lfd {emit_reg dst}, {emit_stack src}\n`
| (_, _) ->
fatal_error "Emit: Imove"
end
| Lop(Iconst_int n) ->
if is_native_immediate n then
` li {emit_reg i.res.(0)}, {emit_nativeint n}\n`
else if n >= -0x8000_0000n && n <= 0x7FFF_FFFFn then begin
` lis {emit_reg i.res.(0)}, {emit_int(nativehigh n)}\n`;
if nativelow n <> 0 then
` ori {emit_reg i.res.(0)}, {emit_reg i.res.(0)}, {emit_int(nativelow n)}\n`
end else begin
let lbl = new_label() in
int_literals := (n, lbl) :: !int_literals;
` addis {emit_gpr 11}, 0, {emit_upper emit_label lbl}\n`;
` {emit_string lg} {emit_reg i.res.(0)}, {emit_lower emit_label lbl}({emit_gpr 11})\n`
end
| Lop(Iconst_float s) ->
let lbl = new_label() in
float_literals := (s, lbl) :: !float_literals;
` addis {emit_gpr 11}, 0, {emit_upper emit_label lbl}\n`;
` lfd {emit_reg i.res.(0)}, {emit_lower emit_label lbl}({emit_gpr 11})\n`
| Lop(Iconst_symbol s) ->
` addis {emit_reg i.res.(0)}, 0, {emit_upper emit_symbol s}\n`;
` addi {emit_reg i.res.(0)}, {emit_reg i.res.(0)}, {emit_lower emit_symbol s}\n`
| Lop(Icall_ind) ->
` mtctr {emit_reg i.arg.(0)}\n`;
` bctrl\n`;
record_frame i.live i.dbg
| Lop(Icall_imm s) ->
` bl {emit_symbol s}\n`;
record_frame i.live i.dbg
| Lop(Itailcall_ind) ->
let n = frame_size() in
` mtctr {emit_reg i.arg.(0)}\n`;
if !contains_calls then begin
` {emit_string lg} {emit_gpr 11}, {emit_int(n - size_addr)}({emit_gpr 1})\n`;
` addi {emit_gpr 1}, {emit_gpr 1}, {emit_int n}\n`;
` mtlr {emit_gpr 11}\n`
end else begin
if n > 0 then
` addi {emit_gpr 1}, {emit_gpr 1}, {emit_int n}\n`
end;
` bctr\n`
| Lop(Itailcall_imm s) ->
if s = !function_name then
` b {emit_label !tailrec_entry_point}\n`
else begin
let n = frame_size() in
if !contains_calls then begin
` {emit_string lg} {emit_gpr 11}, {emit_int(n - size_addr)}({emit_gpr 1})\n`;
` addi {emit_gpr 1}, {emit_gpr 1}, {emit_int n}\n`;
` mtlr {emit_gpr 11}\n`
end else begin
if n > 0 then
` addi {emit_gpr 1}, {emit_gpr 1}, {emit_int n}\n`
end;
` b {emit_symbol s}\n`
end
| Lop(Iextcall(s, alloc)) ->
if alloc then begin
if pic_externals then begin
external_functions := StringSet.add s !external_functions;
` addis {emit_gpr 11}, 0, ha16(L{emit_symbol s}$non_lazy_ptr)\n`;
` {emit_string lg} {emit_gpr 11}, lo16(L{emit_symbol s}$non_lazy_ptr)({emit_gpr 11})\n`
end else begin
` addis {emit_gpr 11}, 0, {emit_upper emit_symbol s}\n`;
` addi {emit_gpr 11}, {emit_gpr 11}, {emit_lower emit_symbol s}\n`
end;
` bl {emit_symbol "caml_c_call"}\n`;
record_frame i.live i.dbg
end else begin
if pic_externals then begin
external_functions := StringSet.add s !external_functions;
` addis {emit_gpr 11}, 0, ha16(L{emit_symbol s}$non_lazy_ptr)\n`;
` {emit_string lg} {emit_gpr 11}, lo16(L{emit_symbol s}$non_lazy_ptr)({emit_gpr 11})\n`;
` mtctr {emit_gpr 11}\n`;
` bctrl\n`
end else
` bl {emit_symbol s}\n`
end
| Lop(Istackoffset n) ->
` addi {emit_gpr 1}, {emit_gpr 1}, {emit_int (-n)}\n`;
stack_offset := !stack_offset + n
| Lop(Iload(chunk, addr)) ->
let loadinstr =
match chunk with
Byte_unsigned -> "lbz"
| Byte_signed -> "lbz"
| Sixteen_unsigned -> "lhz"
| Sixteen_signed -> "lha"
| Thirtytwo_unsigned -> "lwz"
| Thirtytwo_signed -> if ppc64 then "lwa" else "lwz"
| Word -> lg
| Single -> "lfs"
| Double | Double_u -> "lfd" in
emit_load_store loadinstr addr i.arg 0 i.res.(0);
if chunk = Byte_signed then
` extsb {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Istore(chunk, addr)) ->
let storeinstr =
match chunk with
Byte_unsigned | Byte_signed -> "stb"
| Sixteen_unsigned | Sixteen_signed -> "sth"
| Thirtytwo_unsigned | Thirtytwo_signed -> "stw"
| Word -> stg
| Single -> "stfs"
| Double | Double_u -> "stfd" in
emit_load_store storeinstr addr i.arg 1 i.arg.(0)
| Lop(Ialloc n) ->
if !call_gc_label = 0 then call_gc_label := new_label();
` addi {emit_gpr 31}, {emit_gpr 31}, {emit_int(-n)}\n`;
` {emit_string cmplg} {emit_gpr 31}, {emit_gpr 30}\n`;
` addi {emit_reg i.res.(0)}, {emit_gpr 31}, {emit_int size_addr}\n`;
` bltl {emit_label !call_gc_label}\n`;
record_frame i.live Debuginfo.none
| Lop(Ispecific(Ialloc_far n)) ->
if !call_gc_label = 0 then call_gc_label := new_label();
let lbl = new_label() in
` addi {emit_gpr 31}, {emit_gpr 31}, {emit_int(-n)}\n`;
` {emit_string cmplg} {emit_gpr 31}, {emit_gpr 30}\n`;
` bge {emit_label lbl}\n`;
` bl {emit_label !call_gc_label}\n`;
record_frame i.live Debuginfo.none;
`{emit_label lbl}: addi {emit_reg i.res.(0)}, {emit_gpr 31}, {emit_int size_addr}\n`
| Lop(Iintop Isub) -> (* subfc has swapped arguments *)
` subfc {emit_reg i.res.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.arg.(0)}\n`
| Lop(Iintop Imod) ->
` {emit_string divg} {emit_gpr 0}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
` {emit_string mullg} {emit_gpr 0}, {emit_gpr 0}, {emit_reg i.arg.(1)}\n`;
` subfc {emit_reg i.res.(0)}, {emit_gpr 0}, {emit_reg i.arg.(0)}\n`
| Lop(Iintop(Icomp cmp)) ->
begin match cmp with
Isigned c ->
` {emit_string cmpg} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
emit_set_comp c i.res.(0)
| Iunsigned c ->
` {emit_string cmplg} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
emit_set_comp c i.res.(0)
end
| Lop(Iintop Icheckbound) ->
if !Clflags.debug && supports_backtraces then
record_frame Reg.Set.empty i.dbg;
` {emit_string tglle} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`
| Lop(Iintop op) ->
let instr = name_for_intop op in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`
| Lop(Iintop_imm(Isub, n)) ->
` addi {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_int(-n)}\n`
| Lop(Iintop_imm(Idiv, n)) -> (* n is guaranteed to be a power of 2 *)
let l = Misc.log2 n in
` {emit_string sragi} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_int l}\n`;
` addze {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
| Lop(Iintop_imm(Imod, n)) -> (* n is guaranteed to be a power of 2 *)
let l = Misc.log2 n in
` {emit_string sragi} {emit_gpr 0}, {emit_reg i.arg.(0)}, {emit_int l}\n`;
` addze {emit_gpr 0}, {emit_gpr 0}\n`;
` {emit_string slgi} {emit_gpr 0}, {emit_gpr 0}, {emit_int l}\n`;
` subfc {emit_reg i.res.(0)}, {emit_gpr 0}, {emit_reg i.arg.(0)}\n`
| Lop(Iintop_imm(Icomp cmp, n)) ->
begin match cmp with
Isigned c ->
` {emit_string cmpg}i {emit_reg i.arg.(0)}, {emit_int n}\n`;
emit_set_comp c i.res.(0)
| Iunsigned c ->
` {emit_string cmplg}i {emit_reg i.arg.(0)}, {emit_int n}\n`;
emit_set_comp c i.res.(0)
end
| Lop(Iintop_imm(Icheckbound, n)) ->
if !Clflags.debug && supports_backtraces then
record_frame Reg.Set.empty i.dbg;
` {emit_string tglle}i {emit_reg i.arg.(0)}, {emit_int n}\n`
| Lop(Iintop_imm(op, n)) ->
let instr = name_for_intop_imm op in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_int n}\n`
| Lop(Inegf | Iabsf as op) ->
let instr = name_for_floatop1 op in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}\n`
| Lop(Iaddf | Isubf | Imulf | Idivf as op) ->
let instr = name_for_floatop2 op in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`
| Lop(Ifloatofint) ->
if ppc64 then begin
` stdu {emit_reg i.arg.(0)}, -16({emit_gpr 1})\n`;
` lfd {emit_reg i.res.(0)}, 0({emit_gpr 1})\n`;
` addi {emit_gpr 1}, {emit_gpr 1}, 16\n`;
` fcfid {emit_reg i.res.(0)}, {emit_reg i.res.(0)}\n`
end else begin
let lbl = new_label() in
float_literals := ("4.503601774854144e15", lbl) :: !float_literals;
(* That float above represents 0x4330000080000000 *)
` addis {emit_gpr 11}, 0, {emit_upper emit_label lbl}\n`;
` lfd {emit_fpr 0}, {emit_lower emit_label lbl}({emit_gpr 11})\n`;
` lis {emit_gpr 0}, 0x4330\n`;
` stwu {emit_gpr 0}, -16({emit_gpr 1})\n`;
` xoris {emit_gpr 0}, {emit_reg i.arg.(0)}, 0x8000\n`;
` stw {emit_gpr 0}, 4({emit_gpr 1})\n`;
` lfd {emit_reg i.res.(0)}, 0({emit_gpr 1})\n`;
` addi {emit_gpr 1}, {emit_gpr 1}, 16\n`;
` fsub {emit_reg i.res.(0)}, {emit_reg i.res.(0)}, {emit_fpr 0}\n`
end
| Lop(Iintoffloat) ->
let ofs = if ppc64 then 0 else 4 in
` {emit_string fctigz} {emit_fpr 0}, {emit_reg i.arg.(0)}\n`;
` stfdu {emit_fpr 0}, -16({emit_gpr 1})\n`;
` {emit_string lg} {emit_reg i.res.(0)}, {emit_int ofs}({emit_gpr 1})\n`;
` addi {emit_gpr 1}, {emit_gpr 1}, 16\n`
| Lop(Ispecific sop) ->
let instr = name_for_specific sop in
` {emit_string instr} {emit_reg i.res.(0)}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}, {emit_reg i.arg.(2)}\n`
| Lreloadretaddr ->
let n = frame_size() in
` {emit_string lg} {emit_gpr 11}, {emit_int(n - size_addr)}({emit_gpr 1})\n`;
` mtlr {emit_gpr 11}\n`
| Lreturn ->
let n = frame_size() in
if n > 0 then
` addi {emit_gpr 1}, {emit_gpr 1}, {emit_int n}\n`;
` blr\n`
| Llabel lbl ->
`{emit_label lbl}:\n`
| Lbranch lbl ->
` b {emit_label lbl}\n`
| Lcondbranch(tst, lbl) ->
begin match tst with
Itruetest ->
` {emit_string cmpg}i {emit_reg i.arg.(0)}, 0\n`;
emit_delay dslot;
` bne {emit_label lbl}\n`
| Ifalsetest ->
` {emit_string cmpg}i {emit_reg i.arg.(0)}, 0\n`;
emit_delay dslot;
` beq {emit_label lbl}\n`
| Iinttest cmp ->
let (comp, branch) = name_for_int_comparison cmp in
` {emit_string comp} {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
emit_delay dslot;
` {emit_string branch} {emit_label lbl}\n`
| Iinttest_imm(cmp, n) ->
let (comp, branch) = name_for_int_comparison cmp in
` {emit_string comp}i {emit_reg i.arg.(0)}, {emit_int n}\n`;
emit_delay dslot;
` {emit_string branch} {emit_label lbl}\n`
| Ifloattest(cmp, neg) ->
` fcmpu {emit_ccr 0}, {emit_reg i.arg.(0)}, {emit_reg i.arg.(1)}\n`;
(* bit 0 = lt, bit 1 = gt, bit 2 = eq *)
let (bitnum, negtst) =
match cmp with
Ceq -> (2, neg)
| Cne -> (2, not neg)
| Cle -> ` cror 3, 0, 2\n`; (* lt or eq *)
(3, neg)
| Cgt -> (1, neg)
| Cge -> ` cror 3, 1, 2\n`; (* gt or eq *)
(3, neg)
| Clt -> (0, neg) in
emit_delay dslot;
if negtst
then ` bf {emit_int bitnum}, {emit_label lbl}\n`
else ` bt {emit_int bitnum}, {emit_label lbl}\n`
| Ioddtest ->
` andi. {emit_gpr 0}, {emit_reg i.arg.(0)}, 1\n`;
emit_delay dslot;
` bne {emit_label lbl}\n`
| Ieventest ->
` andi. {emit_gpr 0}, {emit_reg i.arg.(0)}, 1\n`;
emit_delay dslot;
` beq {emit_label lbl}\n`
end
| Lcondbranch3(lbl0, lbl1, lbl2) ->
` {emit_string cmpg}i {emit_reg i.arg.(0)}, 1\n`;
emit_delay dslot;
begin match lbl0 with
None -> ()
| Some lbl -> ` blt {emit_label lbl}\n`
end;
begin match lbl1 with
None -> ()
| Some lbl -> ` beq {emit_label lbl}\n`
end;
begin match lbl2 with
None -> ()
| Some lbl -> ` bgt {emit_label lbl}\n`
end
| Lswitch jumptbl ->
let lbl = new_label() in
` addis {emit_gpr 11}, 0, {emit_upper emit_label lbl}\n`;
` addi {emit_gpr 11}, {emit_gpr 11}, {emit_lower emit_label lbl}\n`;
` {emit_string slgi} {emit_gpr 0}, {emit_reg i.arg.(0)}, 2\n`;
` {emit_string lwa}x {emit_gpr 0}, {emit_gpr 11}, {emit_gpr 0}\n`;
` add {emit_gpr 0}, {emit_gpr 11}, {emit_gpr 0}\n`;
` mtctr {emit_gpr 0}\n`;
` bctr\n`;
emit_string rodata_space;
`{emit_label lbl}:`;
for i = 0 to Array.length jumptbl - 1 do
` .long {emit_label jumptbl.(i)} - {emit_label lbl}\n`
done;
emit_string code_space
| Lsetuptrap lbl ->
` bl {emit_label lbl}\n`
| Lpushtrap ->
stack_offset := !stack_offset + 16;
` mflr {emit_gpr 0}\n`;
` {emit_string stg}u {emit_gpr 0}, -16({emit_gpr 1})\n`;
` {emit_string stg} {emit_gpr 29}, {emit_int size_addr}({emit_gpr 1})\n`;
` mr {emit_gpr 29}, {emit_gpr 1}\n`
| Lpoptrap ->
` {emit_string lg} {emit_gpr 29}, {emit_int size_addr}({emit_gpr 1})\n`;
` addi {emit_gpr 1}, {emit_gpr 1}, 16\n`;
stack_offset := !stack_offset - 16
| Lraise ->
if !Clflags.debug && supports_backtraces then begin
` bl {emit_symbol "caml_raise_exn"}\n`;
record_frame Reg.Set.empty i.dbg
end else begin
` {emit_string lg} {emit_gpr 0}, 0({emit_gpr 29})\n`;
` mr {emit_gpr 1}, {emit_gpr 29}\n`;
` mtlr {emit_gpr 0}\n`;
` {emit_string lg} {emit_gpr 29}, {emit_int size_addr}({emit_gpr 1})\n`;
` addi {emit_gpr 1}, {emit_gpr 1}, 16\n`;
` blr\n`
end
and emit_delay = function
None -> ()
| Some i -> emit_instr i None
(* Checks if a pseudo-instruction expands to instructions
that do not branch and do not affect CR0 nor R12. *)
let is_simple_instr i =
match i.desc with
Lop op ->
begin match op with
Icall_imm _ | Icall_ind | Itailcall_imm _ | Itailcall_ind |
Iextcall(_, _) -> false
| Ialloc(_) -> false
| Iintop(Icomp _) -> false
| Iintop_imm(Iand, _) -> false
| Iintop_imm(Icomp _, _) -> false
| _ -> true
end
| Lreloadretaddr -> true
| _ -> false
let no_interference res arg =
try
for i = 0 to Array.length arg - 1 do
for j = 0 to Array.length res - 1 do
if arg.(i).loc = res.(j).loc then raise Exit
done
done;
true
with Exit ->
false
(* Emit a sequence of instructions, trying to fill delay slots for branches *)
let rec emit_all i =
match i with
{desc = Lend} -> ()
| {next = {desc = (Lcondbranch(_, _) | Lcondbranch3(_, _, _))}}
when is_simple_instr i & no_interference i.res i.next.arg ->
emit_instr i.next (Some i);
emit_all i.next.next
| _ ->
emit_instr i None;
emit_all i.next
(* Emission of a function declaration *)
let fundecl fundecl =
function_name := fundecl.fun_name;
defined_functions := StringSet.add fundecl.fun_name !defined_functions;
tailrec_entry_point := new_label();
stack_offset := 0;
call_gc_label := 0;
float_literals := [];
int_literals := [];
if Config.system = "rhapsody"
&& not !Clflags.output_c_object
&& is_generic_function fundecl.fun_name
then (* PR#4690 *)
` .private_extern {emit_symbol fundecl.fun_name}\n`
else
` .globl {emit_symbol fundecl.fun_name}\n`;
begin match Config.system with
| "elf" | "bsd" ->
` .type {emit_symbol fundecl.fun_name}, @function\n`
| _ -> ()
end;
emit_string code_space;
` .align 2\n`;
`{emit_symbol fundecl.fun_name}:\n`;
let n = frame_size() in
if !contains_calls then begin
` mflr {emit_gpr 0}\n`;
` addi {emit_gpr 1}, {emit_gpr 1}, {emit_int(-n)}\n`;
` {emit_string stg} {emit_gpr 0}, {emit_int(n - size_addr)}({emit_gpr 1})\n`
end else begin
if n > 0 then
` addi {emit_gpr 1}, {emit_gpr 1}, {emit_int(-n)}\n`
end;
`{emit_label !tailrec_entry_point}:\n`;
branch_normalization fundecl.fun_body;
emit_all fundecl.fun_body;
(* Emit the glue code to call the GC *)
if !call_gc_label > 0 then begin
`{emit_label !call_gc_label}:\n`;
` b {emit_symbol "caml_call_gc"}\n`
end;
(* Emit the numeric literals *)
if !float_literals <> [] || !int_literals <> [] then begin
emit_string rodata_space;
` .align 3\n`;
List.iter
(fun (f, lbl) ->
`{emit_label lbl}:`;
if ppc64
then emit_float64_directive ".quad" f
else emit_float64_split_directive ".long" f)
!float_literals;
List.iter
(fun (n, lbl) ->
`{emit_label lbl}: {emit_string datag} {emit_nativeint n}\n`)
!int_literals
end
(* Emission of data *)
let declare_global_data s =
` .globl {emit_symbol s}\n`;
if Config.system = "elf" || Config.system = "bsd" then
` .type {emit_symbol s}, @object\n`
let emit_item = function
Cglobal_symbol s ->
declare_global_data s
| Cdefine_symbol s ->
`{emit_symbol s}:\n`;
| Cdefine_label lbl ->
`{emit_data_label lbl}:\n`
| Cint8 n ->
` .byte {emit_int n}\n`
| Cint16 n ->
` .short {emit_int n}\n`
| Cint32 n ->
` .long {emit_nativeint n}\n`
| Cint n ->
` {emit_string datag} {emit_nativeint n}\n`
| Csingle f ->
emit_float32_directive ".long" f
| Cdouble f ->
if ppc64
then emit_float64_directive ".quad" f
else emit_float64_split_directive ".long" f
| Csymbol_address s ->
` {emit_string datag} {emit_symbol s}\n`
| Clabel_address lbl ->
` {emit_string datag} {emit_data_label lbl}\n`
| Cstring s ->
emit_bytes_directive " .byte " s
| Cskip n ->
if n > 0 then ` .space {emit_int n}\n`
| Calign n ->
` .align {emit_int (Misc.log2 n)}\n`
let data l =
emit_string data_space;
List.iter emit_item l
(* Beginning / end of an assembly file *)
let begin_assembly() =
defined_functions := StringSet.empty;
external_functions := StringSet.empty;
(* Emit the beginning of the segments *)
let lbl_begin = Compilenv.make_symbol (Some "data_begin") in
emit_string data_space;
declare_global_data lbl_begin;
`{emit_symbol lbl_begin}:\n`;
let lbl_begin = Compilenv.make_symbol (Some "code_begin") in
emit_string code_space;
declare_global_data lbl_begin;
`{emit_symbol lbl_begin}:\n`
let end_assembly() =
if pic_externals then
(* Emit the pointers to external functions *)
StringSet.iter emit_external !external_functions;
(* Emit the end of the segments *)
emit_string code_space;
let lbl_end = Compilenv.make_symbol (Some "code_end") in
declare_global_data lbl_end;
`{emit_symbol lbl_end}:\n`;
` .long 0\n`;
emit_string data_space;
let lbl_end = Compilenv.make_symbol (Some "data_end") in
declare_global_data lbl_end;
`{emit_symbol lbl_end}:\n`;
` {emit_string datag} 0\n`;
(* Emit the frame descriptors *)
emit_string rodata_space;
let lbl = Compilenv.make_symbol (Some "frametable") in
declare_global_data lbl;
`{emit_symbol lbl}:\n`;
emit_frames
{ efa_label = (fun l -> ` {emit_string datag} {emit_label l}\n`);
efa_16 = (fun n -> ` .short {emit_int n}\n`);
efa_32 = (fun n -> ` .long {emit_int32 n}\n`);
efa_word = (fun n -> ` {emit_string datag} {emit_int n}\n`);
efa_align = (fun n -> ` .align {emit_int (Misc.log2 n)}\n`);
efa_label_rel = (fun lbl ofs ->
` .long ({emit_label lbl} - .) + {emit_int32 ofs}\n`);
efa_def_label = (fun l -> `{emit_label l}:\n`);
efa_string = (fun s -> emit_bytes_directive " .byte " (s ^ "\000"))
}
|