1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
(***********************************************************************)
(* *)
(* Caml Special Light *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1995 Institut National de Recherche en Informatique et *)
(* Automatique. Distributed only by permission. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(* Compilation of pattern matching *)
open Misc
open Location
open Asttypes
open Primitive
open Typedtree
open Lambda
(* See Peyton-Jones, "The Implementation of functional programming
languages", chapter 5. *)
type pattern_matching =
{ mutable cases : (pattern list * lambda) list;
args : (lambda * let_kind) list }
(* To group lines of patterns with identical keys *)
let add_line patl_action pm =
pm.cases <- patl_action :: pm.cases; pm
let add make_matching_fun division key patl_action args =
try
let pm = List.assoc key division in
pm.cases <- patl_action :: pm.cases;
division
with Not_found ->
let pm = make_matching_fun args in
pm.cases <- patl_action :: pm.cases;
(key, pm) :: division
(* To find reasonable names for let-bound and lambda-bound idents *)
let rec name_pattern default = function
(pat :: patl, action) :: rem ->
begin match pat.pat_desc with
Tpat_var id -> id
| Tpat_alias(p, id) -> id
| _ -> name_pattern default rem
end
| _ -> Ident.create default
(* To remove aliases and bind named components *)
let any_pat =
{pat_desc = Tpat_any; pat_loc = Location.none; pat_type = Ctype.none}
let simplify_matching m =
match m.args with
[] -> m
| (arg, mut) :: argl ->
let rec simplify = function
(pat :: patl, action as patl_action) :: rem ->
begin match pat.pat_desc with
Tpat_var id ->
(any_pat :: patl, Llet(Alias, id, arg, action)) ::
simplify rem
| Tpat_alias(p, id) ->
simplify ((p :: patl, Llet(Alias, id, arg, action)) :: rem)
| _ ->
patl_action :: simplify rem
end
| cases -> cases in
{ args = m.args; cases = simplify m.cases }
(* Matching against a constant *)
let make_constant_matching = function
[] -> fatal_error "Matching.make_constant_matching"
| (arg :: argl) -> {cases = []; args = argl}
let divide_constant {cases = cl; args = al} =
let rec divide = function
({pat_desc = Tpat_constant cst} :: patl, action) :: rem ->
let (constants, others) = divide rem in
(add make_constant_matching constants cst (patl, action) al, others)
| cl ->
([], {cases = cl; args = al})
in divide cl
(* Matching against a constructor *)
let make_constr_matching cstr = function
[] -> fatal_error "Matching.make_constr_matching"
| ((arg, mut) :: argl) ->
let (first_pos, last_pos) =
match cstr.cstr_tag with
Cstr_constant _ | Cstr_block _ -> (0, cstr.cstr_arity - 1)
| Cstr_exception _ -> (1, cstr.cstr_arity) in
let rec make_args pos =
if pos > last_pos
then argl
else (Lprim(Pfield pos, [arg]), Alias) :: make_args (pos + 1) in
{cases = []; args = make_args first_pos}
let divide_constructor {cases = cl; args = al} =
let rec divide = function
({pat_desc = Tpat_construct(cstr, args)} :: patl, action) :: rem ->
let (constructs, others) = divide rem in
(add (make_constr_matching cstr) constructs
cstr.cstr_tag (args @ patl, action) al,
others)
| cl ->
([], {cases = cl; args = al})
in divide cl
(* Matching against a variable *)
let divide_var {cases = cl; args = al} =
let rec divide = function
({pat_desc = Tpat_any} :: patl, action) :: rem ->
let (vars, others) = divide rem in
(add_line (patl, action) vars, others)
| cl ->
(make_constant_matching al, {cases = cl; args = al})
in divide cl
(* Matching against a tuple pattern *)
let make_tuple_matching num_comps = function
[] -> fatal_error "Matching.make_tuple_matching"
| (arg, mut) :: argl ->
let rec make_args pos =
if pos >= num_comps
then argl
else (Lprim(Pfield pos, [arg]), Alias) :: make_args (pos + 1) in
{cases = []; args = make_args 0}
let divide_tuple arity {cases = cl; args = al} =
let rec divide = function
({pat_desc = Tpat_tuple args} :: patl, action) :: rem ->
let (tuples, others) = divide rem in
(add_line (args @ patl, action) tuples, others)
| ({pat_desc = Tpat_any} :: patl, action) :: rem ->
let (tuples, others) = divide rem in
(add_line (replicate_list any_pat arity @ patl, action) tuples, others)
| cl ->
(make_tuple_matching arity al, {cases = cl; args = al})
in divide cl
(* Matching against a record pattern *)
let make_record_matching all_labels = function
[] -> fatal_error "Matching.make_tuple_matching"
| ((arg, mut) :: argl) ->
let rec make_args pos =
if pos >= Array.length all_labels then argl else begin
let lbl = all_labels.(pos) in
let access =
match lbl.lbl_repres with
Record_regular -> Pfield lbl.lbl_pos
| Record_float -> Pfloatfield lbl.lbl_pos in
let str =
match lbl.lbl_mut with
Immutable -> Alias
| Mutable -> StrictOpt in
(Lprim(access, [arg]), str) :: make_args(pos + 1)
end in
{cases = []; args = make_args 0}
let divide_record all_labels {cases = cl; args = al} =
let num_fields = Array.length all_labels in
let record_matching_line lbl_pat_list =
let patv = Array.create num_fields any_pat in
List.iter (fun (lbl, pat) -> patv.(lbl.lbl_pos) <- pat) lbl_pat_list;
Array.to_list patv in
let rec divide = function
({pat_desc = Tpat_record lbl_pat_list} :: patl, action) :: rem ->
let (records, others) = divide rem in
(add_line (record_matching_line lbl_pat_list @ patl, action) records,
others)
| ({pat_desc = Tpat_any} :: patl, action) :: rem ->
let (records, others) = divide rem in
(add_line (record_matching_line [] @ patl, action) records, others)
| cl ->
(make_record_matching all_labels al, {cases = cl; args = al})
in divide cl
(* Matching against an or pattern. *)
let rec flatten_orpat_match pat =
match pat.pat_desc with
Tpat_or(p1, p2) -> flatten_orpat_match p1 @ flatten_orpat_match p2
| _ -> [[pat], lambda_unit]
let divide_orpat = function
{cases = (orpat :: patl, act) :: casel; args = arg1 :: argl as args} ->
({cases = flatten_orpat_match orpat; args = [arg1]},
{cases = [patl, act]; args = argl},
{cases = casel; args = args})
| _ ->
fatal_error "Matching.divide_orpat"
(* To combine sub-matchings together *)
let combine_var (lambda1, total1) (lambda2, total2) =
if total1 then (lambda1, true)
else if lambda2 = Lstaticfail then (lambda1, total1)
else (Lcatch(lambda1, lambda2), total2)
let make_test_sequence tst arg const_lambda_list =
List.fold_right
(fun (c, act) rem ->
Lifthenelse(Lprim(tst, [arg; Lconst(Const_base c)]), act, rem))
const_lambda_list Lstaticfail
let make_switch_or_test_sequence arg const_lambda_list int_lambda_list =
let min_key =
List.fold_right (fun (k, l) m -> min k m) int_lambda_list max_int in
let max_key =
List.fold_right (fun (k, l) m -> max k m) int_lambda_list min_int in
if 4 * List.length int_lambda_list <= 4 + max_key - min_key then
(* Sparse matching -- use a sequence of tests
(4 bytecode instructions per test) *)
make_test_sequence (Pintcomp Ceq) arg const_lambda_list
else begin
(* Dense matching -- use a jump table
(2 bytecode instructions + 1 word per entry in the table) *)
let numcases = max_key - min_key + 1 in
let cases =
List.map (fun (key, l) -> (key - min_key, l)) int_lambda_list in
let offsetarg =
if min_key = 0 then arg else Lprim(Poffsetint(-min_key), [arg]) in
Lswitch(offsetarg,
{sw_numconsts = numcases; sw_consts = cases;
sw_numblocks = 0; sw_blocks = []; sw_checked = true})
end
let make_bitvect_check arg int_lambda_list =
let bv = String.make 32 '\000' in
List.iter
(fun (n, l) ->
bv.[n lsr 3] <- Char.chr(Char.code bv.[n lsr 3] lor (1 lsl (n land 7))))
int_lambda_list;
Lifthenelse(Lprim(Pbittest, [Lconst(Const_base(Const_string bv)); arg]),
lambda_unit, Lstaticfail)
let prim_string_equal =
Pccall{prim_name = "string_equal";
prim_arity = 2; prim_alloc = false;
prim_native_name = ""; prim_native_float = false}
let combine_constant arg cst (const_lambda_list, total1) (lambda2, total2) =
let lambda1 =
match cst with
Const_int _ ->
let int_lambda_list =
List.map (fun (Const_int n, l) -> (n, l)) const_lambda_list in
make_switch_or_test_sequence arg const_lambda_list int_lambda_list
| Const_char _ ->
let int_lambda_list =
List.map (fun (Const_char c, l) -> (Char.code c, l))
const_lambda_list in
if List.for_all (fun (c, l) -> l = lambda_unit) const_lambda_list then
make_bitvect_check arg int_lambda_list
else
make_switch_or_test_sequence arg const_lambda_list int_lambda_list
| Const_string _ ->
make_test_sequence prim_string_equal arg const_lambda_list
| Const_float _ ->
make_test_sequence (Pfloatcomp Ceq) arg const_lambda_list
in (Lcatch(lambda1, lambda2), total2)
let combine_constructor arg cstr (tag_lambda_list, total1) (lambda2, total2) =
if cstr.cstr_consts < 0 then begin
(* Special cases for exceptions *)
let lambda1 =
List.fold_right
(fun (Cstr_exception path, act) rem ->
Lifthenelse(Lprim(Pintcomp Ceq,
[Lprim(Pfield 0, [arg]); transl_path path]),
act, rem))
tag_lambda_list Lstaticfail
in (Lcatch(lambda1, lambda2), total2)
end else begin
(* Regular concrete type *)
let rec split_cases = function
[] -> ([], [])
| (cstr, act) :: rem ->
let (consts, nonconsts) = split_cases rem in
match cstr with
Cstr_constant n -> ((n, act) :: consts, nonconsts)
| Cstr_block n -> (consts, (n, act) :: nonconsts) in
let (consts, nonconsts) = split_cases tag_lambda_list in
let lambda1 =
match (cstr.cstr_consts, cstr.cstr_nonconsts, consts, nonconsts) with
(1, 0, [0, act], []) -> act
| (0, 1, [], [0, act]) -> act
| (1, 1, [0, act1], [0, act2]) ->
Lifthenelse(arg, act2, act1)
| (1, 1, [0, act1], []) ->
Lifthenelse(arg, Lstaticfail, act1)
| (1, 1, [], [0, act2]) ->
Lifthenelse(arg, act2, Lstaticfail)
| (_, _, _, _) ->
Lswitch(arg, {sw_numconsts = cstr.cstr_consts;
sw_consts = consts;
sw_numblocks = cstr.cstr_nonconsts;
sw_blocks = nonconsts;
sw_checked = false}) in
if total1
& List.length tag_lambda_list = cstr.cstr_consts + cstr.cstr_nonconsts
then (lambda1, true)
else (Lcatch(lambda1, lambda2), total2)
end
let combine_orpat (lambda1, total1) (lambda2, total2) (lambda3, total3) =
(Lcatch(Lsequence(lambda1, lambda2), lambda3), total3)
(* The main compilation function.
Input: a pattern matching.
Output: a lambda term, a "total" flag (true if we're sure that the
matching covers all cases; this is an approximation). *)
let rec compile_match m =
let rec compile_list = function
[] -> ([], true)
| (key, pm) :: rem ->
let (lambda1, total1) = compile_match pm in
let (list2, total2) = compile_list rem in
((key, lambda1) :: list2, total1 & total2) in
match m with
{ cases = [] } ->
(Lstaticfail, false)
| { cases = ([], action) :: rem; args = argl } ->
if is_guarded action then begin
let (lambda, total) = compile_match { cases = rem; args = argl } in
(Lcatch(action, lambda), total)
end else
(action, true)
| { args = (arg, str) :: argl } ->
let v = name_pattern "match" m.cases in
let newarg = Lvar v in
let pm =
simplify_matching
{ cases = m.cases; args = (newarg, Alias) :: argl } in
let (lam, total) =
match pm.cases with
(pat :: patl, action) :: _ ->
begin match pat.pat_desc with
Tpat_any ->
let (vars, others) = divide_var pm in
combine_var (compile_match vars) (compile_match others)
| Tpat_constant cst ->
let (constants, others) = divide_constant pm in
combine_constant newarg cst
(compile_list constants) (compile_match others)
| Tpat_tuple patl ->
let (tuples, others) = divide_tuple (List.length patl) pm in
combine_var (compile_match tuples) (compile_match others)
| Tpat_construct(cstr, patl) ->
let (constrs, others) = divide_constructor pm in
combine_constructor newarg cstr
(compile_list constrs) (compile_match others)
| Tpat_record((lbl, _) :: _) ->
let (records, others) = divide_record lbl.lbl_all pm in
combine_var (compile_match records) (compile_match others)
| Tpat_or(pat1, pat2) ->
(* Avoid duplicating the code of the action *)
let (or_match, remainder_line, others) = divide_orpat pm in
combine_orpat (compile_match or_match)
(compile_match remainder_line)
(compile_match others)
| _ ->
fatal_error "Matching.compile_match1"
end
| _ -> fatal_error "Matching.compile_match2" in
(Llet(str, v, arg, lam), total)
(* The entry points *)
let compile_matching handler_fun arg pat_act_list =
let pm =
{ cases = List.map (fun (pat, act) -> ([pat], act)) pat_act_list;
args = [arg, Strict] } in
let (lambda, total) = compile_match pm in
if total then lambda else Lcatch(lambda, handler_fun())
let partial_function loc () =
Lprim(Praise, [Lprim(Pmakeblock(0, Immutable),
[transl_path Predef.path_match_failure;
Lconst(Const_block(0,
[Const_base(Const_string !Location.input_name);
Const_base(Const_int loc.loc_start);
Const_base(Const_int loc.loc_end)]))])])
let for_function loc param pat_act_list =
compile_matching (partial_function loc) param pat_act_list
let for_trywith param pat_act_list =
compile_matching (fun () -> Lprim(Praise, [param])) param pat_act_list
let for_let loc param pat body =
compile_matching (partial_function loc) param [pat, body]
let for_multiple_match loc paraml pat_act_list =
let pm1 =
{ cases = List.map (fun (pat, act) -> ([pat], act)) pat_act_list;
args = [Lprim(Pmakeblock(0, Immutable), paraml), Strict] } in
let pm2 =
simplify_matching pm1 in
let rec flatten_patterns = function
({pat_desc = Tpat_tuple args} :: _, action) :: rem ->
(args, action) :: flatten_patterns rem
| ({pat_desc = Tpat_any} :: patl, action) :: rem ->
(replicate_list any_pat (List.length paraml), action) ::
flatten_patterns rem
| _ ->
[] in
let pm3 =
{ cases = flatten_patterns pm2.cases;
args = List.map (fun lam -> (lam, Strict)) paraml } in
let (lambda, total) = compile_match pm3 in
if total then lambda else Lcatch(lambda, partial_function loc ())
|