1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
/***********************************************************************/
/* */
/* OCaml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. All rights reserved. This file is distributed */
/* under the terms of the GNU Library General Public License, with */
/* the special exception on linking described in file ../LICENSE. */
/* */
/***********************************************************************/
/* $Id$ */
#include <string.h>
#include <stdlib.h>
#include "custom.h"
#include "fail.h"
#include "memory.h"
#include "misc.h"
#include "mlvalues.h"
/* Structural comparison on trees. */
struct compare_item { value * v1, * v2; mlsize_t count; };
#define COMPARE_STACK_INIT_SIZE 256
#define COMPARE_STACK_MAX_SIZE (1024*1024)
static struct compare_item compare_stack_init[COMPARE_STACK_INIT_SIZE];
static struct compare_item * compare_stack = compare_stack_init;
static struct compare_item * compare_stack_limit = compare_stack_init
+ COMPARE_STACK_INIT_SIZE;
CAMLexport int caml_compare_unordered;
/* Free the compare stack if needed */
static void compare_free_stack(void)
{
if (compare_stack != compare_stack_init) {
free(compare_stack);
/* Reinitialize the globals for next time around */
compare_stack = compare_stack_init;
compare_stack_limit = compare_stack + COMPARE_STACK_INIT_SIZE;
}
}
/* Same, then raise Out_of_memory */
static void compare_stack_overflow(void)
{
caml_gc_message (0x04, "Stack overflow in structural comparison\n", 0);
compare_free_stack();
caml_raise_out_of_memory();
}
/* Grow the compare stack */
static struct compare_item * compare_resize_stack(struct compare_item * sp)
{
asize_t newsize = 2 * (compare_stack_limit - compare_stack);
asize_t sp_offset = sp - compare_stack;
struct compare_item * newstack;
if (newsize >= COMPARE_STACK_MAX_SIZE) compare_stack_overflow();
if (compare_stack == compare_stack_init) {
newstack = malloc(sizeof(struct compare_item) * newsize);
if (newstack == NULL) compare_stack_overflow();
memcpy(newstack, compare_stack_init,
sizeof(struct compare_item) * COMPARE_STACK_INIT_SIZE);
} else {
newstack =
realloc(compare_stack, sizeof(struct compare_item) * newsize);
if (newstack == NULL) compare_stack_overflow();
}
compare_stack = newstack;
compare_stack_limit = newstack + newsize;
return newstack + sp_offset;
}
/* Structural comparison */
#define LESS -1
#define EQUAL 0
#define GREATER 1
#define UNORDERED ((intnat)1 << (8 * sizeof(value) - 1))
/* The return value of compare_val is as follows:
> 0 v1 is greater than v2
0 v1 is equal to v2
< 0 and > UNORDERED v1 is less than v2
UNORDERED v1 and v2 cannot be compared */
static intnat compare_val(value v1, value v2, int total)
{
struct compare_item * sp;
tag_t t1, t2;
sp = compare_stack;
while (1) {
if (v1 == v2 && total) goto next_item;
if (Is_long(v1)) {
if (v1 == v2) goto next_item;
if (Is_long(v2))
return Long_val(v1) - Long_val(v2);
/* Subtraction above cannot overflow and cannot result in UNORDERED */
if (Is_in_value_area(v2)) {
switch (Tag_val(v2)) {
case Forward_tag:
v2 = Forward_val(v2);
continue;
case Custom_tag: {
int res;
int (*compare)(value v1, value v2) = Custom_ops_val(v2)->compare_ext;
if (compare == NULL) break; /* for backward compatibility */
caml_compare_unordered = 0;
res = compare(v1, v2);
if (caml_compare_unordered && !total) return UNORDERED;
if (res != 0) return res;
goto next_item;
}
default: /*fallthrough*/;
}
}
return LESS; /* v1 long < v2 block */
}
if (Is_long(v2)) {
if (Is_in_value_area(v1)) {
switch (Tag_val(v1)) {
case Forward_tag:
v1 = Forward_val(v1);
continue;
case Custom_tag: {
int res;
int (*compare)(value v1, value v2) = Custom_ops_val(v1)->compare_ext;
if (compare == NULL) break; /* for backward compatibility */
caml_compare_unordered = 0;
res = compare(v1, v2);
if (caml_compare_unordered && !total) return UNORDERED;
if (res != 0) return res;
goto next_item;
}
default: /*fallthrough*/;
}
}
return GREATER; /* v1 block > v2 long */
}
/* If one of the objects is outside the heap (but is not an atom),
use address comparison. Since both addresses are 2-aligned,
shift lsb off to avoid overflow in subtraction. */
if (! Is_in_value_area(v1) || ! Is_in_value_area(v2)) {
if (v1 == v2) goto next_item;
return (v1 >> 1) - (v2 >> 1);
/* Subtraction above cannot result in UNORDERED */
}
t1 = Tag_val(v1);
t2 = Tag_val(v2);
if (t1 == Forward_tag) { v1 = Forward_val (v1); continue; }
if (t2 == Forward_tag) { v2 = Forward_val (v2); continue; }
if (t1 != t2) return (intnat)t1 - (intnat)t2;
switch(t1) {
case String_tag: {
mlsize_t len1, len2;
int res;
if (v1 == v2) break;
len1 = caml_string_length(v1);
len2 = caml_string_length(v2);
res = memcmp(String_val(v1), String_val(v2), len1 <= len2 ? len1 : len2);
if (res < 0) return LESS;
if (res > 0) return GREATER;
if (len1 != len2) return len1 - len2;
break;
}
case Double_tag: {
double d1 = Double_val(v1);
double d2 = Double_val(v2);
if (d1 < d2) return LESS;
if (d1 > d2) return GREATER;
if (d1 != d2) {
if (! total) return UNORDERED;
/* One or both of d1 and d2 is NaN. Order according to the
convention NaN = NaN and NaN < f for all other floats f. */
if (d1 == d1) return GREATER; /* d1 is not NaN, d2 is NaN */
if (d2 == d2) return LESS; /* d2 is not NaN, d1 is NaN */
/* d1 and d2 are both NaN, thus equal: continue comparison */
}
break;
}
case Double_array_tag: {
mlsize_t sz1 = Wosize_val(v1) / Double_wosize;
mlsize_t sz2 = Wosize_val(v2) / Double_wosize;
mlsize_t i;
if (sz1 != sz2) return sz1 - sz2;
for (i = 0; i < sz1; i++) {
double d1 = Double_field(v1, i);
double d2 = Double_field(v2, i);
if (d1 < d2) return LESS;
if (d1 > d2) return GREATER;
if (d1 != d2) {
if (! total) return UNORDERED;
/* See comment for Double_tag case */
if (d1 == d1) return GREATER;
if (d2 == d2) return LESS;
}
}
break;
}
case Abstract_tag:
compare_free_stack();
caml_invalid_argument("equal: abstract value");
case Closure_tag:
case Infix_tag:
compare_free_stack();
caml_invalid_argument("equal: functional value");
case Object_tag: {
intnat oid1 = Oid_val(v1);
intnat oid2 = Oid_val(v2);
if (oid1 != oid2) return oid1 - oid2;
break;
}
case Custom_tag: {
int res;
int (*compare)(value v1, value v2) = Custom_ops_val(v1)->compare;
/* Hardening against comparisons between different types */
if (compare != Custom_ops_val(v2)->compare) {
return strcmp(Custom_ops_val(v1)->identifier,
Custom_ops_val(v2)->identifier) < 0
? LESS : GREATER;
}
if (compare == NULL) {
compare_free_stack();
caml_invalid_argument("equal: abstract value");
}
caml_compare_unordered = 0;
res = compare(v1, v2);
if (caml_compare_unordered && !total) return UNORDERED;
if (res != 0) return res;
break;
}
default: {
mlsize_t sz1 = Wosize_val(v1);
mlsize_t sz2 = Wosize_val(v2);
/* Compare sizes first for speed */
if (sz1 != sz2) return sz1 - sz2;
if (sz1 == 0) break;
/* Remember that we still have to compare fields 1 ... sz - 1 */
if (sz1 > 1) {
sp++;
if (sp >= compare_stack_limit) sp = compare_resize_stack(sp);
sp->v1 = &Field(v1, 1);
sp->v2 = &Field(v2, 1);
sp->count = sz1 - 1;
}
/* Continue comparison with first field */
v1 = Field(v1, 0);
v2 = Field(v2, 0);
continue;
}
}
next_item:
/* Pop one more item to compare, if any */
if (sp == compare_stack) return EQUAL; /* we're done */
v1 = *((sp->v1)++);
v2 = *((sp->v2)++);
if (--(sp->count) == 0) sp--;
}
}
CAMLprim value caml_compare(value v1, value v2)
{
intnat res = compare_val(v1, v2, 1);
/* Free stack if needed */
if (compare_stack != compare_stack_init) compare_free_stack();
if (res < 0)
return Val_int(LESS);
else if (res > 0)
return Val_int(GREATER);
else
return Val_int(EQUAL);
}
CAMLprim value caml_equal(value v1, value v2)
{
intnat res = compare_val(v1, v2, 0);
if (compare_stack != compare_stack_init) compare_free_stack();
return Val_int(res == 0);
}
CAMLprim value caml_notequal(value v1, value v2)
{
intnat res = compare_val(v1, v2, 0);
if (compare_stack != compare_stack_init) compare_free_stack();
return Val_int(res != 0);
}
CAMLprim value caml_lessthan(value v1, value v2)
{
intnat res = compare_val(v1, v2, 0);
if (compare_stack != compare_stack_init) compare_free_stack();
return Val_int(res < 0 && res != UNORDERED);
}
CAMLprim value caml_lessequal(value v1, value v2)
{
intnat res = compare_val(v1, v2, 0);
if (compare_stack != compare_stack_init) compare_free_stack();
return Val_int(res <= 0 && res != UNORDERED);
}
CAMLprim value caml_greaterthan(value v1, value v2)
{
intnat res = compare_val(v1, v2, 0);
if (compare_stack != compare_stack_init) compare_free_stack();
return Val_int(res > 0);
}
CAMLprim value caml_greaterequal(value v1, value v2)
{
intnat res = compare_val(v1, v2, 0);
if (compare_stack != compare_stack_init) compare_free_stack();
return Val_int(res >= 0);
}
|