1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* Automatique. Distributed only by permission. */
/* */
/***********************************************************************/
/* $Id$ */
/* Handling of blocks of bytecode (endianness switch, threading). */
#include "config.h"
#include "debugger.h"
#include "fix_code.h"
#include "memory.h"
#include "misc.h"
#include "mlvalues.h"
#include "instruct.h"
#include "reverse.h"
#ifdef HAS_UNISTD
#include <unistd.h>
#endif
code_t start_code;
asize_t code_size;
unsigned char * saved_code;
/* Read the main bytecode block from a file */
void load_code(fd, len)
int fd;
asize_t len;
{
int i;
code_size = len;
start_code = (code_t) stat_alloc(code_size);
if (read(fd, (char *) start_code, code_size) != code_size)
fatal_error("Fatal error: truncated bytecode file.\n");
#ifdef BIG_ENDIAN
fixup_endianness(start_code, code_size);
#endif
if (debugger_in_use) {
len /= sizeof(opcode_t);
saved_code = (unsigned char *) stat_alloc(len);
for (i = 0; i < len; i++) saved_code[i] = start_code[i];
}
#ifdef THREADED_CODE
/* Better to thread now than at the beginning of interprete(),
since the debugger interface needs to perform SET_EVENT requests
on the code. */
thread_code(start_code, code_size);
#endif
}
/* This code is needed only if the processor is big endian */
#ifdef ARCH_BIG_ENDIAN
void fixup_endianness(code, len)
code_t code;
asize_t len;
{
code_t p;
len /= sizeof(opcode_t);
for (p = code; p < code + len; p++) {
Reverse_int32(p);
}
}
#endif
/* This code is needed only if we're using threaded code */
#ifdef THREADED_CODE
void ** instr_table;
void thread_code (code_t code, asize_t len)
{
code_t p;
int l [STOP + 1];
int i;
for (i = 0; i <= STOP; i++) {
l [i] = 0;
}
/* Instructions with one operand */
l[PUSHACC] = l[ACC] = l[POP] = l[ASSIGN] =
l[PUSHENVACC] = l[ENVACC] = l[PUSH_RETADDR] = l[APPLY] =
l[APPTERM1] = l[APPTERM2] = l[APPTERM3] = l[RETURN] =
l[GRAB] = l[PUSHGETGLOBAL] = l[GETGLOBAL] = l[SETGLOBAL] =
l[PUSHATOM] = l[ATOM] = l[MAKEBLOCK1] = l[MAKEBLOCK2] =
l[MAKEBLOCK3] = l[GETFIELD] = l[SETFIELD] = l[DUMMY] =
l[BRANCH] = l[BRANCHIF] = l[BRANCHIFNOT] = l[PUSHTRAP] =
l[C_CALL1] = l[C_CALL2] = l[C_CALL3] = l[C_CALL4] = l[C_CALL5] =
l[CONSTINT] = l[PUSHCONSTINT] = l[OFFSETINT] = l[OFFSETREF] = 1;
/* Instructions with two operands */
l[APPTERM] = l[CLOSURE] = l[CLOSUREREC] = l[PUSHGETGLOBALFIELD] =
l[GETGLOBALFIELD] = l[MAKEBLOCK] = l[C_CALLN] = 2;
len /= sizeof(opcode_t);
for (p = code; p < code + len; /*nothing*/) {
opcode_t instr = *p;
if (instr < 0 || instr > STOP){
fatal_error_arg ("Fatal error: bad opcode (%lx)\n", (void *) instr);
}
*p++ = (opcode_t)((unsigned long)(instr_table[instr]));
if (instr == SWITCH) {
uint32 sizes = *p++;
uint32 const_size = sizes & 0xFFFF;
uint32 block_size = sizes >> 16;
p += const_size + block_size;
} else {
p += l[instr];
}
}
Assert(p == code + len);
}
#endif /* THREADED_CODE */
void set_instruction(pos, instr)
code_t pos;
opcode_t instr;
{
#ifdef THREADED_CODE
*pos = (opcode_t)((unsigned long)(instr_table[instr]));
#else
*pos = instr;
#endif
}
|