1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
|
/***********************************************************************/
/* */
/* Objective Caml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* Automatique. Distributed only by permission. */
/* */
/***********************************************************************/
/* $Id$ */
/* The thread scheduler */
#include "callback.h"
#include "config.h"
#include "misc.h"
#include "mlvalues.h"
#include "stacks.h"
#include "fail.h"
#include "io.h"
#include "roots.h"
#include "alloc.h"
#include "memory.h"
#include "signals.h"
#if ! (defined(HAS_SELECT) && \
defined(HAS_SETITIMER) && \
defined(HAS_GETTIMEOFDAY) && \
(defined(HAS_WAITPID) || defined(HAS_WAIT4)))
#include "Cannot compile libthreads, system calls missing"
#endif
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <fcntl.h>
#ifdef HAS_UNISTD
#include <unistd.h>
#endif
#ifdef HAS_SYS_SELECT_H
#include <sys/select.h>
#endif
#ifndef FD_ISSET
typedef int fd_set;
#define FD_SETSIZE (sizeof(int) * 8)
#define FD_SET(fd,fds) (*(fds) |= 1 << (fd))
#define FD_CLR(fd,fds) (*(fds) &= ~(1 << (fd)))
#define FD_ISSET(fd,fds) (*(fds) & (1 << (fd)))
#define FD_ZERO(fds) (*(fds) = 0)
#endif
#ifndef HAS_WAITPID
#define waitpid(pid,status,opts) wait4(pid,status,opts,NULL)
#endif
/* Configuration */
/* Initial size of stack when a thread is created (4 Ko) */
#define Thread_stack_size (Stack_size / 4)
/* Max computation time before rescheduling, in microseconds (50ms) */
#define Thread_timeout 50000
/* The thread descriptors */
struct thread_struct {
value ident; /* Unique id (for equality comparisons) */
struct thread_struct * next; /* Double linking of threads */
struct thread_struct * prev;
value * stack_low; /* The execution stack for this thread */
value * stack_high;
value * stack_threshold;
value * sp;
value * trapsp;
value status; /* RUNNABLE, KILLED. etc (see below) */
value fd; /* File descriptor on which this thread is waiting */
value delay; /* Time until which this thread is blocked */
value joining; /* Thread we're trying to join */
value waitpid; /* PID of process we're waiting for */
value retval; /* Value to return when thread resumes */
};
typedef struct thread_struct * thread_t;
#define RUNNABLE Val_int(0)
#define KILLED Val_int(1)
#define SUSPENDED Val_int(2)
#define BLOCKED_READ Val_int(4)
#define BLOCKED_WRITE Val_int(8)
#define BLOCKED_DELAY Val_int(16)
#define BLOCKED_JOIN Val_int(32)
#define BLOCKED_WAIT Val_int(64)
#define RESUMED_WAKEUP Val_int(0)
#define RESUMED_IO Val_int(1)
#define RESUMED_DELAY Val_int(2)
#define RESUMED_JOIN Val_int(3)
#define NO_FD Val_int(0)
#define NO_DELAY Val_unit
#define NO_JOINING Val_unit
#define NO_WAITPID Val_int(0)
#define DELAY_INFTY 1E30 /* +infty, for this purpose */
/* The thread currently active */
static thread_t curr_thread = NULL;
/* Identifier for next thread creation */
static value next_ident = Val_int(0);
#define Assign(dst,src) modify((value *)&(dst), (value)(src))
/* Scan the stacks of the other threads */
static void (*prev_scan_roots_hook) P((scanning_action));
static void thread_scan_roots(action)
scanning_action action;
{
thread_t th;
register value * sp;
/* Scan all active descriptors */
(*action)((value) curr_thread, (value *) &curr_thread);
/* Don't scan curr_thread->sp, this has already been done */
for (th = curr_thread->next; th != curr_thread; th = th->next) {
(*action)((value) th, (value *) &th);
for (sp = th->sp; sp < th->stack_high; sp++) {
(*action)(*sp, sp);
}
}
/* Hook */
if (prev_scan_roots_hook != NULL) (*prev_scan_roots_hook)(action);
}
/* Initialize the thread machinery */
value thread_initialize(unit) /* ML */
value unit;
{
struct itimerval timer;
/* Create a descriptor for the current thread */
curr_thread =
(thread_t) alloc_shr(sizeof(struct thread_struct) / sizeof(value), 0);
curr_thread->ident = next_ident;
next_ident = Val_int(Int_val(next_ident) + 1);
curr_thread->next = curr_thread;
curr_thread->prev = curr_thread;
curr_thread->stack_low = stack_low;
curr_thread->stack_high = stack_high;
curr_thread->stack_threshold = stack_threshold;
curr_thread->sp = extern_sp;
curr_thread->trapsp = trapsp;
curr_thread->status = RUNNABLE;
curr_thread->fd = NO_FD;
curr_thread->delay = NO_DELAY;
curr_thread->joining = NO_JOINING;
curr_thread->waitpid = NO_WAITPID;
curr_thread->retval = Val_unit;
/* Initialize GC */
prev_scan_roots_hook = scan_roots_hook;
scan_roots_hook = thread_scan_roots;
/* Initialize interval timer */
timer.it_interval.tv_sec = 0;
timer.it_interval.tv_usec = Thread_timeout;
timer.it_value = timer.it_interval;
setitimer(ITIMER_VIRTUAL, &timer, NULL);
return Val_unit;
}
/* Create a thread */
value thread_new(clos) /* ML */
value clos;
{
thread_t th;
/* Allocate the thread and its stack */
Push_roots(r, 1);
r[0] = clos;
th = (thread_t) alloc_shr(sizeof(struct thread_struct) / sizeof(value), 0);
clos = r[0];
Pop_roots();
th->ident = next_ident;
next_ident = Val_int(Int_val(next_ident) + 1);
th->stack_low = (value *) stat_alloc(Thread_stack_size);
th->stack_high = th->stack_low + Thread_stack_size / sizeof(value);
th->stack_threshold = th->stack_low + Stack_threshold / sizeof(value);
th->sp = th->stack_high;
th->trapsp = th->stack_high;
/* Set up a return frame that pretends we're applying clos to ().
This way, when this thread is activated, the RETURN will take us
to the entry point of the closure. */
th->sp -= 4;
th->sp[0] = Val_unit;
th->sp[1] = (value) Code_val(clos);
th->sp[2] = clos;
th->sp[3] = Val_long(0); /* no extra args */
/* Fake a C call frame */
th->sp--;
th->sp[0] = Val_unit; /* a dummy environment */
/* The thread is initially runnable */
th->status = RUNNABLE;
th->fd = NO_FD;
th->delay = NO_DELAY;
th->joining = NO_JOINING;
th->waitpid = NO_WAITPID;
th->retval = Val_unit;
/* Insert thread in doubly linked list of threads */
th->prev = curr_thread->prev;
th->next = curr_thread;
Assign(curr_thread->prev->next, th);
Assign(curr_thread->prev, th);
/* Return thread */
return (value) th;
}
/* Return the thread identifier */
value thread_id(th) /* ML */
value th;
{
return ((struct thread_struct *)th)->ident;
}
/* Return the current time as a floating-point number */
static double timeofday()
{
struct timeval tv;
gettimeofday(&tv, NULL);
return (double) tv.tv_sec + (double) tv.tv_usec * 1e-6;
}
/* Find a runnable thread and activate it */
#define FOREACH_THREAD(x) x = curr_thread; do { x = x->next;
#define END_FOREACH(x) } while (x != curr_thread)
static value alloc_process_status();
static value schedule_thread()
{
thread_t run_thread, th;
fd_set readfds, writefds;
double delay, now;
int need_select, need_wait;
/* Don't allow preemption during a callback */
if (callback_depth > 0) return curr_thread->retval;
/* Save the status of the current thread */
curr_thread->stack_low = stack_low;
curr_thread->stack_high = stack_high;
curr_thread->stack_threshold = stack_threshold;
curr_thread->sp = extern_sp;
curr_thread->trapsp = trapsp;
try_again:
/* Build fdsets and delay for select.
See if some join or wait operations succeeded. */
FD_ZERO(&readfds);
FD_ZERO(&writefds);
delay = DELAY_INFTY;
now = -1.0;
need_select = 0;
need_wait = 0;
FOREACH_THREAD(th)
if (th->status & (BLOCKED_READ - 1)) {
FD_SET(Int_val(th->fd), &readfds);
need_select = 1;
}
if (th->status & (BLOCKED_WRITE - 1)) {
FD_SET(Int_val(th->fd), &writefds);
need_select = 1;
}
if (th->status & (BLOCKED_DELAY - 1)) {
double th_delay;
if (now < 0.0) now = timeofday();
th_delay = Double_val(th->delay) - now;
if (th_delay <= 0) {
th->status = RUNNABLE;
Assign(th->delay, NO_DELAY);
th->retval = RESUMED_DELAY;
} else {
if (th_delay < delay) delay = th_delay;
}
}
if (th->status & (BLOCKED_JOIN - 1)) {
if (((thread_t)(th->joining))->status == KILLED) {
th->status = RUNNABLE;
Assign(th->joining, NO_JOINING);
th->retval = RESUMED_JOIN;
}
}
if (th->status & (BLOCKED_WAIT - 1)) {
int status, pid;
pid = waitpid(Int_val(th->waitpid), &status, WNOHANG);
if (pid > 0) {
th->status = RUNNABLE;
th->waitpid = NO_WAITPID;
Assign(th->retval, alloc_process_status(pid, status));
} else {
need_wait = 1;
}
}
END_FOREACH(th);
/* Find if a thread is runnable. */
run_thread = NULL;
FOREACH_THREAD(th)
if (th->status == RUNNABLE) { run_thread = th; break; }
END_FOREACH(th);
/* Do the select if needed */
if (need_select || run_thread == NULL) {
struct timeval delay_tv, * delay_ptr;
int retcode;
/* If a thread is blocked on wait, don't block forever */
if (need_wait && delay > Thread_timeout * 1e-6) {
delay = Thread_timeout * 1e-6;
}
/* Convert delay to a timeval */
/* If a thread is runnable, just poll */
if (run_thread != NULL) {
delay_tv.tv_sec = 0;
delay_tv.tv_usec = 0;
delay_ptr = &delay_tv;
}
else if (delay != DELAY_INFTY) {
delay_tv.tv_sec = (unsigned int) delay;
delay_tv.tv_usec = (delay - (double) delay_tv.tv_sec) * 1E6;
delay_ptr = &delay_tv;
}
else {
delay_ptr = NULL;
}
enter_blocking_section();
retcode = select(FD_SETSIZE, &readfds, &writefds, NULL, delay_ptr);
leave_blocking_section();
if (retcode > 0) {
/* Some descriptors are ready.
Mark the corresponding threads runnable. */
FOREACH_THREAD(th)
if (th->status & (BLOCKED_READ - 1)
&& FD_ISSET(Int_val(th->fd), &readfds)) {
/* Wake up only one thread per fd. */
FD_CLR(Int_val(th->fd), &readfds);
th->status = RUNNABLE;
th->fd = NO_FD;
th->retval = RESUMED_IO;
if (run_thread == NULL) run_thread = th; /* Found one. */
}
if (th->status & (BLOCKED_WRITE - 1)
&& FD_ISSET(Int_val(th->fd), &writefds)) {
/* Wake up only one thread per fd. */
FD_CLR(Int_val(th->fd), &writefds);
th->status = RUNNABLE;
th->fd = NO_FD;
th->retval = RESUMED_IO;
if (run_thread == NULL) run_thread = th; /* Found one. */
}
END_FOREACH(th);
}
/* If we get here with run_thread still NULL, one of the following
may have happened:
- a delay has expired
- a wait() needs to be polled again
- the select() failed (e.g. was interrupted)
In these cases, we go through the loop once more to make the
corresponding threads runnable. */
if (run_thread == NULL &&
(delay != DELAY_INFTY || need_wait || retcode == -1))
goto try_again;
}
/* If we haven't something to run at that point, we're in big trouble. */
if (run_thread == NULL) invalid_argument("Thread: deadlock");
/* Activate the thread */
curr_thread = run_thread;
stack_low = curr_thread->stack_low;
stack_high = curr_thread->stack_high;
stack_threshold = curr_thread->stack_threshold;
extern_sp = curr_thread->sp;
trapsp = curr_thread->trapsp;
return curr_thread->retval;
}
/* Since context switching is not allowed in callbacks, a thread that
blocks during a callback is a deadlock. */
static void check_callback()
{
if (callback_depth > 0)
fatal_error("Thread: deadlock during callback");
}
/* Reschedule without suspending the current thread */
value thread_yield(unit) /* ML */
value unit;
{
Assert(curr_thread != NULL);
curr_thread->retval = Val_unit;
return schedule_thread();
}
/* Suspend the current thread */
value thread_sleep(unit) /* ML */
value unit;
{
Assert(curr_thread != NULL);
check_callback();
curr_thread->status = SUSPENDED;
return schedule_thread();
}
/* Suspend the current thread on a Unix file descriptor */
value thread_wait_read(fd) /* ML */
value fd;
{
if (curr_thread == NULL) return Val_unit;
check_callback();
curr_thread->status = BLOCKED_READ;
curr_thread->fd = fd;
return schedule_thread();
}
value thread_wait_write(fd) /* ML */
value fd;
{
if (curr_thread == NULL) return Val_unit;
check_callback();
curr_thread->status = BLOCKED_WRITE;
curr_thread->fd = fd;
return schedule_thread();
}
/* Primitives to implement suspension on buffered channels */
value thread_inchan_ready(chan) /* ML */
struct channel * chan;
{
return Val_bool(chan->curr < chan->max);
}
value thread_outchan_ready(chan, vsize) /* ML */
struct channel * chan;
value vsize;
{
long size = Long_val(vsize);
/* Negative size means we want to flush the buffer entirely */
if (size < 0) {
return Val_bool(chan->curr == chan->buff);
} else {
int free = chan->end - chan->curr;
if (chan->curr == chan->buff)
return Val_bool(size < free);
else
return Val_bool(size <= free);
}
}
/* Suspend the current thread for some time */
value thread_delay(time) /* ML */
value time;
{
double date = timeofday() + Double_val(time);
Assert(curr_thread != NULL);
check_callback();
curr_thread->status = BLOCKED_DELAY;
Assign(curr_thread->delay, copy_double(date));
return schedule_thread();
}
/* Suspend the current thread on a Unix file descriptor, with timeout */
value thread_wait_timed_read(fd_time) /* ML */
value fd_time;
{
double date = timeofday() + Double_val(Field(fd_time, 1));
Assert(curr_thread != NULL);
check_callback();
curr_thread->status = BLOCKED_READ | BLOCKED_DELAY;
curr_thread->fd = Field(fd_time, 0);
Assign(curr_thread->delay, copy_double(date));
return schedule_thread();
}
value thread_wait_timed_write(fd_time) /* ML */
value fd_time;
{
double date = timeofday() + Double_val(Field(fd_time, 1));
Assert(curr_thread != NULL);
check_callback();
curr_thread->status = BLOCKED_WRITE | BLOCKED_DELAY;
curr_thread->fd = Field(fd_time, 0);
Assign(curr_thread->delay, copy_double(date));
return schedule_thread();
}
/* Suspend the current thread until another thread terminates */
value thread_join(th) /* ML */
value th;
{
check_callback();
Assert(curr_thread != NULL);
if (((thread_t)th)->status == KILLED) return Val_unit;
curr_thread->status = BLOCKED_JOIN;
Assign(curr_thread->joining, th);
return schedule_thread();
}
/* Suspend the current thread until a Unix process exits */
value thread_wait_pid(pid) /* ML */
value pid;
{
Assert(curr_thread != NULL);
check_callback();
curr_thread->status = BLOCKED_WAIT;
curr_thread->waitpid = pid;
return schedule_thread();
}
/* Reactivate another thread */
value thread_wakeup(thread) /* ML */
value thread;
{
thread_t th = (thread_t) thread;
switch (th->status) {
case SUSPENDED:
th->status = RUNNABLE;
th->retval = RESUMED_WAKEUP;
break;
case KILLED:
failwith("Thread.wakeup: killed thread");
default:
failwith("Thread.wakeup: thread not suspended");
}
return Val_unit;
}
/* Return the current thread */
value thread_self(unit) /* ML */
value unit;
{
Assert(curr_thread != NULL);
return (value) curr_thread;
}
/* Kill a thread */
value thread_kill(thread) /* ML */
value thread;
{
value retval = Val_unit;
thread_t th = (thread_t) thread;
/* Don't paint ourselves in a corner */
if (th == th->next) failwith("Thread.kill: cannot kill the last thread");
/* This thread is no longer waiting on anything */
th->status = KILLED;
Assign(th->delay, NO_DELAY);
Assign(th->joining, NO_JOINING);
/* If this is the current thread, activate another one */
if (th == curr_thread) retval = schedule_thread();
/* Remove thread from the doubly-linked list */
Assign(th->prev->next, th->next);
Assign(th->next->prev, th->prev);
/* Free its resources */
stat_free((char *) th->stack_low);
th->stack_low = NULL;
th->stack_high = NULL;
th->stack_threshold = NULL;
th->sp = NULL;
th->trapsp = NULL;
return retval;
}
/* Auxiliary function for allocating the result of a waitpid() call */
#if !(defined(WIFEXITED) && defined(WEXITSTATUS) && defined(WIFSTOPPED) && \
defined(WSTOPSIG) && defined(WTERMSIG))
#define WIFEXITED(status) ((status) & 0xFF == 0)
#define WEXITSTATUS(status) (((status) >> 8) & 0xFF)
#define WIFSTOPPED(status) ((status) & 0xFF == 0xFF)
#define WSTOPSIG(status) (((status) >> 8) & 0xFF)
#define WTERMSIG(status) ((status) & 0x3F)
#endif
static value alloc_process_status(pid, status)
int pid, status;
{
value st, res;
Push_roots(r, 1);
if (WIFEXITED(status)) {
st = alloc(1, 0);
Field(st, 0) = Val_int(WEXITSTATUS(status));
}
else if (WIFSTOPPED(status)) {
st = alloc(1, 2);
Field(st, 0) = Val_int(WSTOPSIG(status));
}
else {
st = alloc(1, 1);
Field(st, 0) = Val_int(WTERMSIG(status));
}
r[0] = st;
res = alloc_tuple(2);
Field(res, 0) = Val_int(pid);
Field(res, 1) = r[0];
Pop_roots();
return res;
}
|