1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the GNU Library General Public License, with *)
(* the special exception on linking described in file ../LICENSE. *)
(* *)
(***********************************************************************)
(* $Id$ *)
(** Processor-native integers.
This module provides operations on the type [nativeint] of
signed 32-bit integers (on 32-bit platforms) or
signed 64-bit integers (on 64-bit platforms).
This integer type has exactly the same width as that of a [long]
integer type in the C compiler. All arithmetic operations over
[nativeint] are taken modulo 2{^32} or 2{^64} depending
on the word size of the architecture.
Performance notice: values of type [nativeint] occupy more memory
space than values of type [int], and arithmetic operations on
[nativeint] are generally slower than those on [int]. Use [nativeint]
only when the application requires the extra bit of precision
over the [int] type.
*)
val zero : nativeint
(** The native integer 0.*)
val one : nativeint
(** The native integer 1.*)
val minus_one : nativeint
(** The native integer -1.*)
external neg : nativeint -> nativeint = "%nativeint_neg"
(** Unary negation. *)
external add : nativeint -> nativeint -> nativeint = "%nativeint_add"
(** Addition. *)
external sub : nativeint -> nativeint -> nativeint = "%nativeint_sub"
(** Subtraction. *)
external mul : nativeint -> nativeint -> nativeint = "%nativeint_mul"
(** Multiplication. *)
external div : nativeint -> nativeint -> nativeint = "%nativeint_div"
(** Integer division. Raise [Division_by_zero] if the second
argument is zero. This division rounds the real quotient of
its arguments towards zero, as specified for {!Pervasives.(/)}. *)
external rem : nativeint -> nativeint -> nativeint = "%nativeint_mod"
(** Integer remainder. If [y] is not zero, the result
of [Nativeint.rem x y] satisfies the following properties:
[Nativeint.zero <= Nativeint.rem x y < Nativeint.abs y] and
[x = Nativeint.add (Nativeint.mul (Nativeint.div x y) y) (Nativeint.rem x y)].
If [y = 0], [Nativeint.rem x y] raises [Division_by_zero]. *)
val succ : nativeint -> nativeint
(** Successor.
[Nativeint.succ x] is [Nativeint.add x Nativeint.one]. *)
val pred : nativeint -> nativeint
(** Predecessor.
[Nativeint.pred x] is [Nativeint.sub x Nativeint.one]. *)
val abs : nativeint -> nativeint
(** Return the absolute value of its argument. *)
val size : int
(** The size in bits of a native integer. This is equal to [32]
on a 32-bit platform and to [64] on a 64-bit platform. *)
val max_int : nativeint
(** The greatest representable native integer,
either 2{^31} - 1 on a 32-bit platform,
or 2{^63} - 1 on a 64-bit platform. *)
val min_int : nativeint
(** The greatest representable native integer,
either -2{^31} on a 32-bit platform,
or -2{^63} on a 64-bit platform. *)
external logand : nativeint -> nativeint -> nativeint = "%nativeint_and"
(** Bitwise logical and. *)
external logor : nativeint -> nativeint -> nativeint = "%nativeint_or"
(** Bitwise logical or. *)
external logxor : nativeint -> nativeint -> nativeint = "%nativeint_xor"
(** Bitwise logical exclusive or. *)
val lognot : nativeint -> nativeint
(** Bitwise logical negation *)
external shift_left : nativeint -> int -> nativeint = "%nativeint_lsl"
(** [Nativeint.shift_left x y] shifts [x] to the left by [y] bits.
The result is unspecified if [y < 0] or [y >= bitsize],
where [bitsize] is [32] on a 32-bit platform and
[64] on a 64-bit platform. *)
external shift_right : nativeint -> int -> nativeint = "%nativeint_asr"
(** [Nativeint.shift_right x y] shifts [x] to the right by [y] bits.
This is an arithmetic shift: the sign bit of [x] is replicated
and inserted in the vacated bits.
The result is unspecified if [y < 0] or [y >= bitsize]. *)
external shift_right_logical :
nativeint -> int -> nativeint = "%nativeint_lsr"
(** [Nativeint.shift_right_logical x y] shifts [x] to the right
by [y] bits.
This is a logical shift: zeroes are inserted in the vacated bits
regardless of the sign of [x].
The result is unspecified if [y < 0] or [y >= bitsize]. *)
external of_int : int -> nativeint = "%nativeint_of_int"
(** Convert the given integer (type [int]) to a native integer
(type [nativeint]). *)
external to_int : nativeint -> int = "%nativeint_to_int"
(** Convert the given native integer (type [nativeint]) to an
integer (type [int]). The high-order bit is lost during
the conversion. *)
external of_float : float -> nativeint = "caml_nativeint_of_float"
(** Convert the given floating-point number to a native integer,
discarding the fractional part (truncate towards 0).
The result of the conversion is undefined if, after truncation,
the number is outside the range
\[{!Nativeint.min_int}, {!Nativeint.max_int}\]. *)
external to_float : nativeint -> float = "caml_nativeint_to_float"
(** Convert the given native integer to a floating-point number. *)
external of_int32 : int32 -> nativeint = "%nativeint_of_int32"
(** Convert the given 32-bit integer (type [int32])
to a native integer. *)
external to_int32 : nativeint -> int32 = "%nativeint_to_int32"
(** Convert the given native integer to a
32-bit integer (type [int32]). On 64-bit platforms,
the 64-bit native integer is taken modulo 2{^32},
i.e. the top 32 bits are lost. On 32-bit platforms,
the conversion is exact. *)
external of_string : string -> nativeint = "caml_nativeint_of_string"
(** Convert the given string to a native integer.
The string is read in decimal (by default) or in hexadecimal,
octal or binary if the string begins with [0x], [0o] or [0b]
respectively.
Raise [Failure "int_of_string"] if the given string is not
a valid representation of an integer, or if the integer represented
exceeds the range of integers representable in type [nativeint]. *)
val to_string : nativeint -> string
(** Return the string representation of its argument, in decimal. *)
type t = nativeint
(** An alias for the type of native integers. *)
val compare: t -> t -> int
(** The comparison function for native integers, with the same specification as
{!Pervasives.compare}. Along with the type [t], this function [compare]
allows the module [Nativeint] to be passed as argument to the functors
{!Set.Make} and {!Map.Make}. *)
(**/**)
(** {6 Deprecated functions} *)
external format : string -> nativeint -> string = "caml_nativeint_format"
(** [Nativeint.format fmt n] return the string representation of the
native integer [n] in the format specified by [fmt].
[fmt] is a [Printf]-style format consisting of exactly
one [%d], [%i], [%u], [%x], [%X] or [%o] conversion specification.
This function is deprecated; use {!Printf.sprintf} with a [%nx] format
instead. *)
|