summaryrefslogtreecommitdiffstats
path: root/typing/typedecl.ml
blob: 9a77ce538a968e91fb72dbfd064bf20256831b1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
(***********************************************************************)
(*                                                                     *)
(*                                OCaml                                *)
(*                                                                     *)
(* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt*)
(*                                                                     *)
(*  Copyright 1996 Institut National de Recherche en Informatique et   *)
(*  en Automatique.  All rights reserved.  This file is distributed    *)
(*  under the terms of the Q Public License version 1.0.               *)
(*                                                                     *)
(***********************************************************************)

(**** Typing of type definitions ****)

open Misc
open Asttypes
open Parsetree
open Primitive
open Types
open Typetexp

type error =
    Repeated_parameter
  | Duplicate_constructor of string
  | Too_many_constructors
  | Duplicate_label of string
  | Recursive_abbrev of string
  | Cycle_in_def of string * type_expr
  | Definition_mismatch of type_expr * Includecore.type_mismatch list
  | Constraint_failed of type_expr * type_expr
  | Inconsistent_constraint of Env.t * (type_expr * type_expr) list
  | Type_clash of Env.t * (type_expr * type_expr) list
  | Parameters_differ of Path.t * type_expr * type_expr
  | Null_arity_external
  | Missing_native_external
  | Unbound_type_var of type_expr * type_declaration
  | Not_open_type of Path.t
  | Not_extensible_type of Path.t
  | Extension_mismatch of Path.t * Includecore.type_mismatch list
  | Rebind_wrong_type of Longident.t * Env.t * (type_expr * type_expr) list
  | Rebind_mismatch of Longident.t * Path.t * Path.t
  | Rebind_private of Longident.t
  | Bad_variance of int * (bool * bool * bool) * (bool * bool * bool)
  | Unavailable_type_constructor of Path.t
  | Bad_fixed_type of string
  | Unbound_type_var_ext of type_expr * extension_constructor
  | Varying_anonymous
  | Val_in_structure

open Typedtree

exception Error of Location.t * error

(* Enter all declared types in the environment as abstract types *)

let enter_type env sdecl id =
  let decl =
    { type_params =
        List.map (fun _ -> Btype.newgenvar ()) sdecl.ptype_params;
      type_arity = List.length sdecl.ptype_params;
      type_kind = Type_abstract;
      type_private = sdecl.ptype_private;
      type_manifest =
        begin match sdecl.ptype_manifest with None -> None
        | Some _ -> Some(Ctype.newvar ()) end;
      type_variance = List.map (fun _ -> Variance.full) sdecl.ptype_params;
      type_newtype_level = None;
      type_loc = sdecl.ptype_loc;
      type_attributes = sdecl.ptype_attributes;
    }
  in
  Env.add_type ~check:true id decl env

let update_type temp_env env id loc =
  let path = Path.Pident id in
  let decl = Env.find_type path temp_env in
  match decl.type_manifest with None -> ()
  | Some ty ->
      let params = List.map (fun _ -> Ctype.newvar ()) decl.type_params in
      try Ctype.unify env (Ctype.newconstr path params) ty
      with Ctype.Unify trace ->
        raise (Error(loc, Type_clash (env, trace)))

(* Determine if a type is (an abbreviation for) the type "float" *)
(* We use the Ctype.expand_head_opt version of expand_head to get access
   to the manifest type of private abbreviations. *)
let is_float env ty =
  match Ctype.repr (Ctype.expand_head_opt env ty) with
    {desc = Tconstr(p, _, _)} -> Path.same p Predef.path_float
  | _ -> false

(* Determine if a type definition defines a fixed type. (PW) *)
let is_fixed_type sd =
  let rec has_row_var sty =
    match sty.ptyp_desc with
      Ptyp_alias (sty, _) -> has_row_var sty
    | Ptyp_class _
    | Ptyp_object (_, Open)
    | Ptyp_variant (_, Open, _)
    | Ptyp_variant (_, Closed, Some _) -> true
    | _ -> false
  in
  match sd.ptype_manifest with
    None -> false
  | Some sty ->
      sd.ptype_kind = Ptype_abstract &&
      sd.ptype_private = Private &&
      has_row_var sty

(* Set the row variable in a fixed type *)
let set_fixed_row env loc p decl =
  let tm =
    match decl.type_manifest with
      None -> assert false
    | Some t -> Ctype.expand_head env t
  in
  let rv =
    match tm.desc with
      Tvariant row ->
        let row = Btype.row_repr row in
        tm.desc <- Tvariant {row with row_fixed = true};
        if Btype.static_row row then Btype.newgenty Tnil
        else row.row_more
    | Tobject (ty, _) ->
        snd (Ctype.flatten_fields ty)
    | _ ->
        raise (Error (loc, Bad_fixed_type "is not an object or variant"))
  in
  if not (Btype.is_Tvar rv) then
    raise (Error (loc, Bad_fixed_type "has no row variable"));
  rv.desc <- Tconstr (p, decl.type_params, ref Mnil)

(* Translate one type declaration *)

module StringSet =
  Set.Make(struct
    type t = string
    let compare (x:t) y = compare x y
  end)

let make_params env params =
  let make_param (sty, v) =
    try
      (transl_type_param env sty, v)
    with Already_bound ->
      raise(Error(sty.ptyp_loc, Repeated_parameter))
  in
    List.map make_param params

let transl_labels loc env closed lbls =
  if lbls = [] then
    Syntaxerr.ill_formed_ast loc "Records cannot be empty.";
  let all_labels = ref StringSet.empty in
  List.iter
    (fun {pld_name = {txt=name; loc}} ->
       if StringSet.mem name !all_labels then
         raise(Error(loc, Duplicate_label name));
       all_labels := StringSet.add name !all_labels)
    lbls;
  let mk {pld_name=name;pld_mutable=mut;pld_type=arg;pld_loc=loc;pld_attributes=attrs} =
    let arg = Ast_helper.Typ.force_poly arg in
    let cty = transl_simple_type env closed arg in
    {ld_id = Ident.create name.txt; ld_name = name; ld_mutable = mut; ld_type = cty;
     ld_loc = loc; ld_attributes = attrs}
  in
  let lbls = List.map mk lbls in
  let lbls' =
    List.map
      (fun ld ->
         let ty = ld.ld_type.ctyp_type in
         let ty = match ty.desc with Tpoly(t,[]) -> t | _ -> ty in
         {Types.ld_id = ld.ld_id;
          ld_mutable = ld.ld_mutable;
          ld_type = ty;
          ld_loc = ld.ld_loc;
          ld_attributes = ld.ld_attributes
         }
      )
      lbls in
  lbls, lbls'

let transl_constructor_arguments loc env closed = function
  | Pcstr_tuple l ->
      let l = List.map (transl_simple_type env closed) l in
      Types.Cstr_tuple (List.map (fun t -> t.ctyp_type) l),
      Cstr_tuple l
  | Pcstr_record l ->
      let lbls, lbls' = transl_labels loc env closed l in
      Types.Cstr_record lbls',
      Cstr_record lbls

let make_constructor loc env type_path type_params sargs sret_type =
  match sret_type with
  | None ->
      let args, targs =
        transl_constructor_arguments loc env true sargs
      in
        targs, None, args, None
  | Some sret_type ->
      (* if it's a generalized constructor we must first narrow and
         then widen so as to not introduce any new constraints *)
      let z = narrow () in
      reset_type_variables ();
      let args, targs =
        transl_constructor_arguments loc env false sargs
      in
      let tret_type = transl_simple_type env false sret_type in
      let ret_type = tret_type.ctyp_type in
      begin
        match (Ctype.repr ret_type).desc with
          Tconstr (p', _, _) when Path.same type_path p' -> ()
        | _ ->
            raise (Error (sret_type.ptyp_loc, Constraint_failed
                            (ret_type, Ctype.newconstr type_path type_params)))
      end;
      widen z;
      targs, Some tret_type, args, Some ret_type

let transl_declaration env sdecl id =
  (* Bind type parameters *)
  reset_type_variables();
  Ctype.begin_def ();
  let tparams = make_params env sdecl.ptype_params in
  let params = List.map (fun (cty, _) -> cty.ctyp_type) tparams in
  let cstrs = List.map
    (fun (sty, sty', loc) ->
      transl_simple_type env false sty,
      transl_simple_type env false sty', loc)
    sdecl.ptype_cstrs
  in
  let (tkind, kind) =
    match sdecl.ptype_kind with
        Ptype_abstract -> Ttype_abstract, Type_abstract
      | Ptype_variant scstrs ->
        if scstrs = [] then
          Syntaxerr.ill_formed_ast sdecl.ptype_loc
            "Variant types cannot be empty.";
        let all_constrs = ref StringSet.empty in
        List.iter
          (fun {pcd_name = {txt = name}} ->
            if StringSet.mem name !all_constrs then
              raise(Error(sdecl.ptype_loc, Duplicate_constructor name));
            all_constrs := StringSet.add name !all_constrs)
          scstrs;
        if List.length
          (List.filter (fun cd -> cd.pcd_args <> Pcstr_tuple []) scstrs)
          > (Config.max_tag + 1) then
          raise(Error(sdecl.ptype_loc, Too_many_constructors));
        let make_cstr scstr =
          let name = Ident.create scstr.pcd_name.txt in
          let targs, tret_type, args, ret_type =
            make_constructor scstr.pcd_loc env (Path.Pident id) params
                             scstr.pcd_args scstr.pcd_res
          in
          let tcstr =
            { cd_id = name;
              cd_name = scstr.pcd_name;
              cd_args = targs;
              cd_res = tret_type;
              cd_loc = scstr.pcd_loc;
              cd_attributes = scstr.pcd_attributes }
          in
          let cstr =
            { Types.cd_id = name;
              cd_args = args;
              cd_res = ret_type;
              cd_loc = scstr.pcd_loc;
              cd_attributes = scstr.pcd_attributes }
          in
            tcstr, cstr
        in
        let tcstrs, cstrs = List.split (List.map make_cstr scstrs) in
          Ttype_variant tcstrs, Type_variant cstrs
      | Ptype_record lbls ->
          let lbls, lbls' = transl_labels sdecl.ptype_loc env true lbls in
          let rep =
            if List.for_all (fun l -> is_float env l.Types.ld_type) lbls'
            then Record_float
            else Record_regular
          in
          Ttype_record lbls, Type_record(lbls', rep)
      | Ptype_open -> Ttype_open, Type_open
      in
    let (tman, man) = match sdecl.ptype_manifest with
        None -> None, None
      | Some sty ->
        let no_row = not (is_fixed_type sdecl) in
        let cty = transl_simple_type env no_row sty in
        Some cty, Some cty.ctyp_type
    in
    let decl =
      { type_params = params;
        type_arity = List.length params;
        type_kind = kind;
        type_private = sdecl.ptype_private;
        type_manifest = man;
        type_variance = List.map (fun _ -> Variance.full) params;
        type_newtype_level = None;
        type_loc = sdecl.ptype_loc;
        type_attributes = sdecl.ptype_attributes;
      } in

  (* Check constraints *)
    List.iter
      (fun (cty, cty', loc) ->
        let ty = cty.ctyp_type in
        let ty' = cty'.ctyp_type in
        try Ctype.unify env ty ty' with Ctype.Unify tr ->
          raise(Error(loc, Inconsistent_constraint (env, tr))))
      cstrs;
    Ctype.end_def ();
  (* Add abstract row *)
    if is_fixed_type sdecl then begin
      let (p, _) =
        try Env.lookup_type (Longident.Lident(Ident.name id ^ "#row")) env
        with Not_found -> assert false in
      set_fixed_row env sdecl.ptype_loc p decl
    end;
  (* Check for cyclic abbreviations *)
    begin match decl.type_manifest with None -> ()
      | Some ty ->
        if Ctype.cyclic_abbrev env id ty then
          raise(Error(sdecl.ptype_loc, Recursive_abbrev sdecl.ptype_name.txt));
    end;
    {
      typ_id = id;
      typ_name = sdecl.ptype_name;
      typ_params = tparams;
      typ_type = decl;
      typ_cstrs = cstrs;
      typ_loc = sdecl.ptype_loc;
      typ_manifest = tman;
      typ_kind = tkind;
      typ_private = sdecl.ptype_private;
      typ_attributes = sdecl.ptype_attributes;
    }

(* Generalize a type declaration *)

let generalize_decl decl =
  List.iter Ctype.generalize decl.type_params;
  Btype.iter_type_expr_kind Ctype.generalize decl.type_kind;
  begin match decl.type_manifest with
  | None    -> ()
  | Some ty -> Ctype.generalize ty
  end

(* Check that all constraints are enforced *)

module TypeSet = Btype.TypeSet
module TypeMap = Btype.TypeMap

let rec check_constraints_rec env loc visited ty =
  let ty = Ctype.repr ty in
  if TypeSet.mem ty !visited then () else begin
  visited := TypeSet.add ty !visited;
  match ty.desc with
  | Tconstr (path, args, _) ->
      let args' = List.map (fun _ -> Ctype.newvar ()) args in
      let ty' = Ctype.newconstr path args' in
      begin try Ctype.enforce_constraints env ty'
      with Ctype.Unify _ -> assert false
      | Not_found -> raise (Error(loc, Unavailable_type_constructor path))
      end;
      if not (Ctype.matches env ty ty') then
        raise (Error(loc, Constraint_failed (ty, ty')));
      List.iter (check_constraints_rec env loc visited) args
  | Tpoly (ty, tl) ->
      let _, ty = Ctype.instance_poly false tl ty in
      check_constraints_rec env loc visited ty
  | _ ->
      Btype.iter_type_expr (check_constraints_rec env loc visited) ty
  end

module SMap = Map.Make(String)

let check_constraints_labels env visited l pl =
  let rec get_loc name = function
      [] -> assert false
    | pld :: tl ->
        if name = pld.pld_name.txt then pld.pld_type.ptyp_loc
        else get_loc name tl
  in
  List.iter
    (fun {Types.ld_id=name; ld_type=ty} ->
       check_constraints_rec env (get_loc (Ident.name name) pl) visited ty)
    l

let check_constraints env sdecl (_, decl) =
  let visited = ref TypeSet.empty in
  begin match decl.type_kind with
  | Type_abstract -> ()
  | Type_variant l ->
      let find_pl = function
          Ptype_variant pl -> pl
        | Ptype_record _ | Ptype_abstract | Ptype_open -> assert false
      in
      let pl = find_pl sdecl.ptype_kind in
      let pl_index =
        let foldf acc x =
          SMap.add x.pcd_name.txt x acc
        in
        List.fold_left foldf SMap.empty pl
      in
      List.iter
        (fun {Types.cd_id=name; cd_args; cd_res} ->
          let {pcd_args; pcd_res; _} =
            try SMap.find (Ident.name name) pl_index
            with Not_found -> assert false in
          begin match cd_args, pcd_args with
          | Cstr_tuple tyl, Pcstr_tuple styl ->
              List.iter2
                (fun sty ty ->
                   check_constraints_rec env sty.ptyp_loc visited ty)
                styl tyl
          | Cstr_record tyl, Pcstr_record styl ->
              check_constraints_labels env visited tyl styl
          | _ -> assert false
          end;
          match pcd_res, cd_res with
          | Some sr, Some r ->
              check_constraints_rec env sr.ptyp_loc visited r
          | _ ->
              () )
        l
  | Type_record (l, _) ->
      let find_pl = function
          Ptype_record pl -> pl
        | Ptype_variant _ | Ptype_abstract | Ptype_open -> assert false
      in
      let pl = find_pl sdecl.ptype_kind in
      check_constraints_labels env visited l pl
  | Type_open -> ()
  end;
  begin match decl.type_manifest with
  | None -> ()
  | Some ty ->
      let sty =
        match sdecl.ptype_manifest with Some sty -> sty | _ -> assert false
      in
      check_constraints_rec env sty.ptyp_loc visited ty
  end

(*
   If both a variant/record definition and a type equation are given,
   need to check that the equation refers to a type of the same kind
   with the same constructors and labels.
*)
let check_coherence env loc id decl =
  match decl with
    { type_kind = (Type_variant _ | Type_record _| Type_open);
      type_manifest = Some ty } ->
      begin match (Ctype.repr ty).desc with
        Tconstr(path, args, _) ->
          begin try
            let decl' = Env.find_type path env in
            let err =
              if List.length args <> List.length decl.type_params
              then [Includecore.Arity]
              else if not (Ctype.equal env false args decl.type_params)
              then [Includecore.Constraint]
              else
                Includecore.type_declarations ~equality:true env
                  (Path.last path)
                  decl'
                  id
                  (Subst.type_declaration
                     (Subst.add_type id path Subst.identity) decl)
            in
            if err <> [] then
              raise(Error(loc, Definition_mismatch (ty, err)))
          with Not_found ->
            raise(Error(loc, Unavailable_type_constructor path))
          end
      | _ -> raise(Error(loc, Definition_mismatch (ty, [])))
      end
  | _ -> ()

let check_abbrev env sdecl (id, decl) =
  check_coherence env sdecl.ptype_loc id decl

(* Check that recursion is well-founded *)

let check_well_founded env loc path to_check ty =
  let visited = ref TypeMap.empty in
  let rec check ty0 exp_nodes ty =
    let ty = Btype.repr ty in
    if TypeSet.mem ty exp_nodes then begin
      (*Format.eprintf "@[%a@]@." Printtyp.raw_type_expr ty;*)
      if match ty0.desc with
      | Tconstr (p, _, _) -> Path.same p path
      | _ -> false
      then raise (Error (loc, Recursive_abbrev (Path.name path)))
      else raise (Error (loc, Cycle_in_def (Path.name path, ty0)))
    end;
    let (fini, exp_nodes) =
      try
        let prev = TypeMap.find ty !visited in
        if TypeSet.subset exp_nodes prev then (true, exp_nodes) else
        (false, TypeSet.union exp_nodes prev)
      with Not_found ->
        (false, exp_nodes)
    in
    let snap = Btype.snapshot () in
    if fini then () else try
      visited := TypeMap.add ty exp_nodes !visited;
      match ty.desc with
      | Tconstr(p, args, _)
        when not (TypeSet.is_empty exp_nodes) || to_check p ->
          let ty' = Ctype.try_expand_once_opt env ty in
          let ty0 = if TypeSet.is_empty exp_nodes then ty else ty0 in
          check ty0 (TypeSet.add ty exp_nodes) ty'
      | _ -> raise Ctype.Cannot_expand
    with
    | Ctype.Cannot_expand ->
        let nodes =
          if !Clflags.recursive_types && Ctype.is_contractive env ty
          || match ty.desc with Tobject _ | Tvariant _ -> true | _ -> false
          then TypeSet.empty
          else exp_nodes in
        Btype.iter_type_expr (check ty0 nodes) ty
    | Ctype.Unify _ ->
        (* Will be detected by check_recursion *)
        Btype.backtrack snap
  in
  check ty TypeSet.empty ty

let check_well_founded_manifest env loc path decl =
  if decl.type_manifest = None then () else
  let args = List.map (fun _ -> Ctype.newvar()) decl.type_params in
  check_well_founded env loc path (Path.same path) (Ctype.newconstr path args)

let check_well_founded_decl env loc path decl to_check =
  let open Btype in
  let it =
    {type_iterators with
     it_type_expr = (fun _ -> check_well_founded env loc path to_check)} in
  it.it_type_declaration it (Ctype.instance_declaration decl)

(* Check for ill-defined abbrevs *)

let check_recursion env loc path decl to_check =
  (* to_check is true for potentially mutually recursive paths.
     (path, decl) is the type declaration to be checked. *)

  if decl.type_params = [] then () else

  let visited = ref [] in

  let rec check_regular cpath args prev_exp ty =
    let ty = Ctype.repr ty in
    if not (List.memq ty !visited) then begin
      visited := ty :: !visited;
      match ty.desc with
      | Tconstr(path', args', _) ->
          if Path.same path path' then begin
            if not (Ctype.equal env false args args') then
              raise (Error(loc,
                     Parameters_differ(cpath, ty, Ctype.newconstr path args)))
          end
          (* Attempt to expand a type abbreviation if:
              1- [to_check path'] holds
                 (otherwise the expansion cannot involve [path]);
              2- we haven't expanded this type constructor before
                 (otherwise we could loop if [path'] is itself
                 a non-regular abbreviation). *)
          else if to_check path' && not (List.mem path' prev_exp) then begin
            try
              (* Attempt expansion *)
              let (params0, body0, _) = Env.find_type_expansion path' env in
              let (params, body) =
                Ctype.instance_parameterized_type params0 body0 in
              begin
                try List.iter2 (Ctype.unify env) params args'
                with Ctype.Unify _ ->
                  raise (Error(loc, Constraint_failed
                                 (ty, Ctype.newconstr path' params0)));
              end;
              check_regular path' args (path' :: prev_exp) body
            with Not_found -> ()
          end;
          List.iter (check_regular cpath args prev_exp) args'
      | Tpoly (ty, tl) ->
          let (_, ty) = Ctype.instance_poly ~keep_names:true false tl ty in
          check_regular cpath args prev_exp ty
      | _ ->
          Btype.iter_type_expr (check_regular cpath args prev_exp) ty
    end in

  Misc.may
    (fun body ->
      let (args, body) =
        Ctype.instance_parameterized_type
          ~keep_names:true decl.type_params body in
      check_regular path args [] body)
    decl.type_manifest

let check_abbrev_recursion env id_loc_list to_check tdecl =
  let decl = tdecl.typ_type in
  let id = tdecl.typ_id in
  check_recursion env (List.assoc id id_loc_list) (Path.Pident id) decl to_check

(* Compute variance *)

let get_variance ty visited =
  try TypeMap.find ty !visited with Not_found -> Variance.null

let compute_variance env visited vari ty =
  let rec compute_variance_rec vari ty =
    (* Format.eprintf "%a: %x@." Printtyp.type_expr ty (Obj.magic vari); *)
    let ty = Ctype.repr ty in
    let vari' = get_variance ty visited in
    if Variance.subset vari vari' then () else
    let vari = Variance.union vari vari' in
    visited := TypeMap.add ty vari !visited;
    let compute_same = compute_variance_rec vari in
    match ty.desc with
      Tarrow (_, ty1, ty2, _) ->
        let open Variance in
        let v = conjugate vari in
        let v1 =
          if mem May_pos v || mem May_neg v
          then set May_weak true v else v
        in
        compute_variance_rec v1 ty1;
        compute_same ty2
    | Ttuple tl ->
        List.iter compute_same tl
    | Tconstr (path, tl, _) ->
        let open Variance in
        if tl = [] then () else begin
          try
            let decl = Env.find_type path env in
            let cvari f = mem f vari in
            List.iter2
              (fun ty v ->
                let cv f = mem f v in
                let strict =
                  cvari Inv && cv Inj || (cvari Pos || cvari Neg) && cv Inv
                in
                if strict then compute_variance_rec full ty else
                let p1 = inter v vari
                and n1 = inter v (conjugate vari) in
                let v1 =
                  union (inter covariant (union p1 (conjugate p1)))
                    (inter (conjugate covariant) (union n1 (conjugate n1)))
                and weak =
                  cvari May_weak && (cv May_pos || cv May_neg) ||
                  (cvari May_pos || cvari May_neg) && cv May_weak
                in
                let v2 = set May_weak weak v1 in
                compute_variance_rec v2 ty)
              tl decl.type_variance
          with Not_found ->
            List.iter (compute_variance_rec may_inv) tl
        end
    | Tobject (ty, _) ->
        compute_same ty
    | Tfield (_, _, ty1, ty2) ->
        compute_same ty1;
        compute_same ty2
    | Tsubst ty ->
        compute_same ty
    | Tvariant row ->
        let row = Btype.row_repr row in
        List.iter
          (fun (_,f) ->
            match Btype.row_field_repr f with
              Rpresent (Some ty) ->
                compute_same ty
            | Reither (_, tyl, _, _) ->
                let open Variance in
                let upper =
                  List.fold_left (fun s f -> set f true s)
                    null [May_pos; May_neg; May_weak]
                in
                let v = inter vari upper in
                List.iter (compute_variance_rec v) tyl
            | _ -> ())
          row.row_fields;
        compute_same row.row_more
    | Tpoly (ty, _) ->
        compute_same ty
    | Tvar _ | Tnil | Tlink _ | Tunivar _ -> ()
    | Tpackage (_, _, tyl) ->
        let v =
          Variance.(if mem Pos vari || mem Neg vari then full else may_inv)
        in
        List.iter (compute_variance_rec v) tyl
  in
  compute_variance_rec vari ty

let make p n i =
  let open Variance in
  set May_pos p (set May_neg n (set May_weak n (set Inj i null)))

let compute_variance_type env check (required, loc) decl tyl =
  (* Requirements *)
  let required =
    List.map (fun (c,n,i) -> if c || n then (c,n,i) else (true,true,i))
      required
  in
  (* Prepare *)
  let params = List.map Btype.repr decl.type_params in
  let tvl = ref TypeMap.empty in
  (* Compute occurences in body *)
  let open Variance in
  List.iter
    (fun (cn,ty) ->
      compute_variance env tvl (if cn then full else covariant) ty)
    tyl;
  if check then begin
    (* Check variance of parameters *)
    let pos = ref 0 in
    List.iter2
      (fun ty (c, n, i) ->
        incr pos;
        let var = get_variance ty tvl in
        let (co,cn) = get_upper var and ij = mem Inj var in
        if Btype.is_Tvar ty && (co && not c || cn && not n || not ij && i)
        then raise (Error(loc, Bad_variance (!pos, (co,cn,ij), (c,n,i)))))
      params required;
    (* Check propagation from constrained parameters *)
    let args = Btype.newgenty (Ttuple params) in
    let fvl = Ctype.free_variables args in
    let fvl = List.filter (fun v -> not (List.memq v params)) fvl in
    (* If there are no extra variables there is nothing to do *)
    if fvl = [] then () else
    let tvl2 = ref TypeMap.empty in
    List.iter2
      (fun ty (p,n,i) ->
        if Btype.is_Tvar ty then () else
        let v =
          if p then if n then full else covariant else conjugate covariant in
        compute_variance env tvl2 v ty)
      params required;
    let visited = ref TypeSet.empty in
    let rec check ty =
      let ty = Ctype.repr ty in
      if TypeSet.mem ty !visited then () else
      let visited' = TypeSet.add ty !visited in
      visited := visited';
      let v1 = get_variance ty tvl in
      let snap = Btype.snapshot () in
      let v2 =
        TypeMap.fold
          (fun t vt v ->
            if Ctype.equal env false [ty] [t] then union vt v else v)
          !tvl2 null in
      Btype.backtrack snap;
      let (c1,n1) = get_upper v1 and (c2,n2,_,i2) = get_lower v2 in
      if c1 && not c2 || n1 && not n2 then
        if List.memq ty fvl then
          let code = if not i2 then -2 else if c2 || n2 then -1 else -3 in
          raise (Error (loc, Bad_variance (code, (c1,n1,false), (c2,n2,false))))
        else
          Btype.iter_type_expr check ty
    in
    List.iter (fun (_,ty) -> check ty) tyl;
  end;
  List.map2
    (fun ty (p, n, i) ->
      let v = get_variance ty tvl in
      let tr = decl.type_private in
      (* Use required variance where relevant *)
      let concr = decl.type_kind <> Type_abstract (*|| tr = Type_new*) in
      let (p, n) =
        if tr = Private || not (Btype.is_Tvar ty) then (p, n) (* set *)
        else (false, false) (* only check *)
      and i = concr  || i && tr = Private in
      let v = union v (make p n i) in
      let v =
        if not concr then v else
        if mem Pos v && mem Neg v then full else
        if Btype.is_Tvar ty then v else
        union v
          (if p then if n then full else covariant else conjugate covariant)
      in
      if decl.type_kind = Type_abstract && tr = Public then v else
      set May_weak (mem May_neg v) v)
    params required

let add_false = List.map (fun ty -> false, ty)

(* A parameter is constrained if either is is instantiated,
   or it is a variable appearing in another parameter *)
let constrained vars ty =
  match ty.desc with
  | Tvar _ -> List.exists (fun tl -> List.memq ty tl) vars
  | _ -> true

let for_constr = function
  | Types.Cstr_tuple l -> add_false l
  | Types.Cstr_record l ->
      List.map
        (fun {Types.ld_mutable; ld_type} -> (ld_mutable = Mutable, ld_type))
        l

let compute_variance_gadt env check (required, loc as rloc) decl
    (tl, ret_type_opt) =
  match ret_type_opt with
  | None ->
      compute_variance_type env check rloc {decl with type_private = Private}
        (for_constr tl)
  | Some ret_type ->
      match Ctype.repr ret_type with
      | {desc=Tconstr (_, tyl, _)} ->
          (* let tyl = List.map (Ctype.expand_head env) tyl in *)
          let tyl = List.map Ctype.repr tyl in
          let fvl = List.map (Ctype.free_variables ?env:None) tyl in
          let _ =
            List.fold_left2
              (fun (fv1,fv2) ty (c,n,i) ->
                match fv2 with [] -> assert false
                | fv :: fv2 ->
                    (* fv1 @ fv2 = free_variables of other parameters *)
                    if (c||n) && constrained (fv1 @ fv2) ty then
                      raise (Error(loc, Varying_anonymous));
                    (fv :: fv1, fv2))
              ([], fvl) tyl required
          in
          compute_variance_type env check rloc
            {decl with type_params = tyl; type_private = Private}
            (for_constr tl)
      | _ -> assert false

let compute_variance_extension env check decl ext rloc =
  compute_variance_gadt env check rloc
    {decl with type_params = ext.ext_type_params}
    (ext.ext_args, ext.ext_ret_type)

let compute_variance_decl env check decl (required, _ as rloc) =
  if (decl.type_kind = Type_abstract || decl.type_kind = Type_open)
       && decl.type_manifest = None then
    List.map
      (fun (c, n, i) ->
        make (not n) (not c) (decl.type_kind <> Type_abstract || i))
      required
  else
  let mn =
    match decl.type_manifest with
      None -> []
    | Some ty -> [false, ty]
  in
  match decl.type_kind with
    Type_abstract | Type_open ->
      compute_variance_type env check rloc decl mn
  | Type_variant tll ->
      if List.for_all (fun c -> c.Types.cd_res = None) tll then
        compute_variance_type env check rloc decl
          (mn @ List.flatten (List.map (fun c -> for_constr c.Types.cd_args)
                                tll))
      else begin
        let mn =
          List.map (fun (_,ty) -> (Types.Cstr_tuple [ty],None)) mn in
        let tll =
          mn @ List.map (fun c -> c.Types.cd_args, c.Types.cd_res) tll in
        match List.map (compute_variance_gadt env check rloc decl) tll with
        | vari :: rem ->
            let varl = List.fold_left (List.map2 Variance.union) vari rem in
            List.map
              Variance.(fun v -> if mem Pos v && mem Neg v then full else v)
              varl
        | _ -> assert false
      end
  | Type_record (ftl, _) ->
      compute_variance_type env check rloc decl
        (mn @ List.map (fun {Types.ld_mutable; ld_type} ->
             (ld_mutable = Mutable, ld_type)) ftl)

let is_sharp id =
  let s = Ident.name id in
  String.length s > 0 && s.[0] = '#'

let rec compute_variance_fixpoint env decls required variances =
  let new_decls =
    List.map2
      (fun (id, decl) variance -> id, {decl with type_variance = variance})
      decls variances
  in
  let new_env =
    List.fold_right
      (fun (id, decl) env -> Env.add_type ~check:true id decl env)
      new_decls env
  in
  let new_variances =
    List.map2
      (fun (id, decl) -> compute_variance_decl new_env false decl)
      new_decls required
  in
  let new_variances =
    List.map2 (List.map2 Variance.union) new_variances variances in
  if new_variances <> variances then
    compute_variance_fixpoint env decls required new_variances
  else begin
    (* List.iter (fun (id, decl) ->
      Printf.eprintf "%s:" (Ident.name id);
      List.iter (fun (v : Variance.t) ->
        Printf.eprintf " %x" (Obj.magic v : int))
        decl.type_variance;
      prerr_endline "")
      new_decls; *)
    List.iter2
      (fun (id, decl) req -> if not (is_sharp id) then
        ignore (compute_variance_decl new_env true decl req))
      new_decls required;
    new_decls, new_env
  end

let init_variance (id, decl) =
  List.map (fun _ -> Variance.null) decl.type_params

let add_injectivity =
  List.map
    (function
      | Covariant -> (true, false, false)
      | Contravariant -> (false, true, false)
      | Invariant -> (false, false, false)
    )

(* for typeclass.ml *)
let compute_variance_decls env cldecls =
  let decls, required =
    List.fold_right
      (fun (obj_id, obj_abbr, cl_abbr, clty, cltydef, ci) (decls, req) ->
        let variance = List.map snd ci.ci_params in
        (obj_id, obj_abbr) :: decls,
        (add_injectivity variance, ci.ci_loc) :: req)
      cldecls ([],[])
  in
  let variances = List.map init_variance decls in
  let (decls, _) = compute_variance_fixpoint env decls required variances in
  List.map2
    (fun (_,decl) (_, _, cl_abbr, clty, cltydef, _) ->
      let variance = decl.type_variance in
      (decl, {cl_abbr with type_variance = variance},
       {clty with cty_variance = variance},
       {cltydef with clty_variance = variance}))
    decls cldecls

(* Check multiple declarations of labels/constructors *)

let check_duplicates sdecl_list =
  let labels = Hashtbl.create 7 and constrs = Hashtbl.create 7 in
  List.iter
    (fun sdecl -> match sdecl.ptype_kind with
      Ptype_variant cl ->
        List.iter
          (fun pcd ->
            try
              let name' = Hashtbl.find constrs pcd.pcd_name.txt in
              Location.prerr_warning pcd.pcd_loc
                (Warnings.Duplicate_definitions
                   ("constructor", pcd.pcd_name.txt, name',
                    sdecl.ptype_name.txt))
            with Not_found ->
              Hashtbl.add constrs pcd.pcd_name.txt sdecl.ptype_name.txt)
          cl
    | Ptype_record fl ->
        List.iter
          (fun {pld_name=cname;pld_loc=loc} ->
            try
              let name' = Hashtbl.find labels cname.txt in
              Location.prerr_warning loc
                (Warnings.Duplicate_definitions
                   ("label", cname.txt, name', sdecl.ptype_name.txt))
            with Not_found -> Hashtbl.add labels cname.txt sdecl.ptype_name.txt)
          fl
    | Ptype_abstract -> ()
    | Ptype_open -> ())
    sdecl_list

(* Force recursion to go through id for private types*)
let name_recursion sdecl id decl =
  match decl with
  | { type_kind = Type_abstract;
      type_manifest = Some ty;
      type_private = Private; } when is_fixed_type sdecl ->
    let ty = Ctype.repr ty in
    let ty' = Btype.newty2 ty.level ty.desc in
    if Ctype.deep_occur ty ty' then
      let td = Tconstr(Path.Pident id, decl.type_params, ref Mnil) in
      Btype.link_type ty (Btype.newty2 ty.level td);
      {decl with type_manifest = Some ty'}
    else decl
  | _ -> decl

(* Translate a set of mutually recursive type declarations *)
let transl_type_decl env sdecl_list =
  (* Add dummy types for fixed rows *)
  let fixed_types = List.filter is_fixed_type sdecl_list in
  let sdecl_list =
    List.map
      (fun sdecl ->
        let ptype_name =
          mkloc (sdecl.ptype_name.txt ^"#row") sdecl.ptype_name.loc in
        {sdecl with
         ptype_name; ptype_kind = Ptype_abstract; ptype_manifest = None})
      fixed_types
    @ sdecl_list
  in

  (* Create identifiers. *)
  let id_list =
    List.map (fun sdecl -> Ident.create sdecl.ptype_name.txt) sdecl_list
  in
  (*
     Since we've introduced fresh idents, make sure the definition
     level is at least the binding time of these events. Otherwise,
     passing one of the recursively-defined type constrs as argument
     to an abbreviation may fail.
  *)
  Ctype.init_def(Ident.current_time());
  Ctype.begin_def();
  (* Enter types. *)
  let temp_env = List.fold_left2 enter_type env sdecl_list id_list in
  (* Translate each declaration. *)
  let current_slot = ref None in
  let warn_unused = Warnings.is_active (Warnings.Unused_type_declaration "") in
  let id_slots id =
    if not warn_unused then id, None
    else
      (* See typecore.ml for a description of the algorithm used
         to detect unused declarations in a set of recursive definitions. *)
      let slot = ref [] in
      let td = Env.find_type (Path.Pident id) temp_env in
      let name = Ident.name id in
      Env.set_type_used_callback
        name td
        (fun old_callback ->
          match !current_slot with
          | Some slot -> slot := (name, td) :: !slot
          | None ->
              List.iter (fun (name, d) -> Env.mark_type_used env name d)
                (get_ref slot);
              old_callback ()
        );
      id, Some slot
  in
  let transl_declaration name_sdecl (id, slot) =
    current_slot := slot; transl_declaration temp_env name_sdecl id in
  let tdecls =
    List.map2 transl_declaration sdecl_list (List.map id_slots id_list) in
  let decls =
    List.map (fun tdecl -> (tdecl.typ_id, tdecl.typ_type)) tdecls in
  current_slot := None;
  (* Check for duplicates *)
  check_duplicates sdecl_list;
  (* Build the final env. *)
  let newenv =
    List.fold_right
      (fun (id, decl) env -> Env.add_type ~check:true id decl env)
      decls env
  in
  (* Update stubs *)
  List.iter2
    (fun id sdecl -> update_type temp_env newenv id sdecl.ptype_loc)
    id_list sdecl_list;
  (* Generalize type declarations. *)
  Ctype.end_def();
  List.iter (fun (_, decl) -> generalize_decl decl) decls;
  (* Check for ill-formed abbrevs *)
  let id_loc_list =
    List.map2 (fun id sdecl -> (id, sdecl.ptype_loc))
      id_list sdecl_list
  in
  List.iter (fun (id, decl) ->
    check_well_founded_manifest newenv (List.assoc id id_loc_list)
      (Path.Pident id) decl)
    decls;
  let to_check =
    function Path.Pident id -> List.mem_assoc id id_loc_list | _ -> false in
  List.iter (fun (id, decl) ->
    check_well_founded_decl newenv (List.assoc id id_loc_list) (Path.Pident id)
      decl to_check)
    decls;
  List.iter (check_abbrev_recursion newenv id_loc_list to_check) tdecls;
  (* Check that all type variable are closed *)
  List.iter2
    (fun sdecl tdecl ->
      let decl = tdecl.typ_type in
       match Ctype.closed_type_decl decl with
         Some ty -> raise(Error(sdecl.ptype_loc, Unbound_type_var(ty,decl)))
       | None   -> ())
    sdecl_list tdecls;
  (* Check that constraints are enforced *)
  List.iter2 (check_constraints newenv) sdecl_list decls;
  (* Name recursion *)
  let decls =
    List.map2 (fun sdecl (id, decl) -> id, name_recursion sdecl id decl)
      sdecl_list decls
  in
  (* Add variances to the environment *)
  let required =
    List.map
      (fun sdecl ->
         add_injectivity (List.map snd sdecl.ptype_params),
         sdecl.ptype_loc
      )
      sdecl_list
  in
  let final_decls, final_env =
    compute_variance_fixpoint env decls required (List.map init_variance decls)
  in
  (* Check re-exportation *)
  List.iter2 (check_abbrev final_env) sdecl_list final_decls;
  (* Keep original declaration *)
  let final_decls =
    List.map2
      (fun tdecl (id2, decl) ->
        { tdecl with typ_type = decl }
      ) tdecls final_decls
  in
  (* Done *)
  (final_decls, final_env)

(* Translating type extensions *)

let transl_extension_constructor env type_path type_params
                                 typext_params priv sext =
  let id = Ident.create sext.pext_name.txt in
  let args, ret_type, kind =
    match sext.pext_kind with
      Pext_decl(sargs, sret_type) ->
        let targs, tret_type, args, ret_type =
          make_constructor sext.pext_loc env type_path typext_params
            sargs sret_type
        in
          args, ret_type, Text_decl(targs, tret_type)
    | Pext_rebind lid ->
        let cdescr = Typetexp.find_constructor env sext.pext_loc lid.txt in
        let usage =
          if cdescr.cstr_private = Private || priv = Public
          then Env.Positive else Env.Privatize
        in
        Env.mark_constructor usage env (Longident.last lid.txt) cdescr;
        let (args, cstr_res) = Ctype.instance_constructor cdescr in
        let res, ret_type =
          if cdescr.cstr_generalized then
            let params = Ctype.instance_list env type_params in
            let res = Ctype.newconstr type_path params in
            let ret_type = Some (Ctype.newconstr type_path params) in
              res, ret_type
          else (Ctype.newconstr type_path typext_params), None
        in
        begin
          try
            Ctype.unify env cstr_res res
          with Ctype.Unify trace ->
            raise (Error(lid.loc,
                     Rebind_wrong_type(lid.txt, env, trace)))
        end;
        (* Remove "_" names from parameters used in the constructor *)
        if not cdescr.cstr_generalized then begin
          let vars =
            Ctype.free_variables (Btype.newgenty (Ttuple args))
          in
            List.iter
              (function {desc = Tvar (Some "_")} as ty ->
                          if List.memq ty vars then ty.desc <- Tvar None
                        | _ -> ())
              typext_params
        end;
        (* Ensure that constructor's type matches the type being extended *)
        let cstr_type_path, cstr_type_params =
          match cdescr.cstr_res.desc with
            Tconstr (p, _, _) ->
              let decl = Env.find_type p env in
                p, decl.type_params
          | _ -> assert false
        in
        let cstr_types =
          (Btype.newgenty
             (Tconstr(cstr_type_path, cstr_type_params, ref Mnil)))
          :: cstr_type_params
        in
        let ext_types =
          (Btype.newgenty
             (Tconstr(type_path, type_params, ref Mnil)))
          :: type_params
        in
        if not (Ctype.equal env true cstr_types ext_types) then
          raise (Error(lid.loc,
                       Rebind_mismatch(lid.txt, cstr_type_path, type_path)));
        (* Disallow rebinding private constructors to non-private *)
        begin
          match cdescr.cstr_private, priv with
            Private, Public ->
              raise (Error(lid.loc, Rebind_private lid.txt))
          | _ -> ()
        end;
        let path =
          match cdescr.cstr_tag with
            Cstr_extension(path, _) -> path
          | _ -> assert false
        in
        let args =
          match cdescr.cstr_inlined with
          | None ->
              Types.Cstr_tuple args
          | Some decl ->
              let tl =
                match args with
                | [ {desc=Tconstr(_, tl, _)} ] -> tl
                | _ -> assert false
              in
              let decl = Ctype.instance_declaration decl in
              assert (List.length decl.type_params = List.length tl);
              List.iter2 (Ctype.unify env) decl.type_params tl;
              let lbls =
                match decl.type_kind with
                | Type_record (lbls, Record_extension) -> lbls
                | _ -> assert false
              in
              Types.Cstr_record lbls
        in
        args, ret_type, Text_rebind(path, lid)
  in
  let ext =
    { ext_type_path = type_path;
      ext_type_params = typext_params;
      ext_args = args;
      ext_ret_type = ret_type;
      ext_private = priv;
      Types.ext_loc = sext.pext_loc;
      Types.ext_attributes = sext.pext_attributes; }
  in
    { ext_id = id;
      ext_name = sext.pext_name;
      ext_type = ext;
      ext_kind = kind;
      Typedtree.ext_loc = sext.pext_loc;
      Typedtree.ext_attributes = sext.pext_attributes; }

let transl_type_extension check_open env loc styext =
  reset_type_variables();
  Ctype.begin_def();
  let (type_path, type_decl) =
    Typetexp.find_type env loc styext.ptyext_path.txt
  in
  begin
    match type_decl.type_kind with
      Type_open -> ()
    | Type_abstract ->
        if check_open then begin
          try
            let {pext_loc} =
              List.find (function {pext_kind = Pext_decl _} -> true
                                | {pext_kind = Pext_rebind _} -> false)
                        styext.ptyext_constructors
            in
              raise (Error(pext_loc, Not_open_type type_path))
          with Not_found -> ()
        end
    | _ -> raise (Error(loc, Not_extensible_type type_path))
  end;
  let type_variance =
    List.map (fun v ->
                let (co, cn) = Variance.get_upper v in
                  (not cn, not co, false))
             type_decl.type_variance
  in
  let err =
    if type_decl.type_arity <> List.length styext.ptyext_params then
      [Includecore.Arity]
    else
      if List.for_all2
           (fun (c1, n1, _) (c2, n2, _) -> (not c2 || c1) && (not n2 || n1))
           type_variance
           (add_injectivity (List.map snd styext.ptyext_params))
      then [] else [Includecore.Variance]
  in
  if err <> [] then
    raise (Error(loc, Extension_mismatch (type_path, err)));
  let ttype_params = make_params env styext.ptyext_params in
  let type_params = List.map (fun (cty, _) -> cty.ctyp_type) ttype_params in
  List.iter2 (Ctype.unify_var env)
    (Ctype.instance_list env type_decl.type_params)
    type_params;
  let constructors =
    List.map (transl_extension_constructor env type_path
               type_decl.type_params type_params styext.ptyext_private)
      styext.ptyext_constructors
  in
  Ctype.end_def();
  (* Generalize types *)
  List.iter Ctype.generalize type_params;
  List.iter
    (fun ext ->
       Btype.iter_type_expr_cstr_args Ctype.generalize ext.ext_type.ext_args;
       may Ctype.generalize ext.ext_type.ext_ret_type)
    constructors;
  (* Check that all type variable are closed *)
  List.iter
    (fun ext ->
       match Ctype.closed_extension_constructor ext.ext_type with
         Some ty ->
           raise(Error(ext.ext_loc, Unbound_type_var_ext(ty, ext.ext_type)))
       | None -> ())
    constructors;
  (* Check variances are correct *)
  List.iter
    (fun ext->
      ignore (compute_variance_extension env true type_decl
                ext.ext_type (type_variance, loc)))
    constructors;
  (* Add extension constructors to the environment *)
  let newenv =
    List.fold_left
      (fun env ext ->
         Env.add_extension ~check:true ext.ext_id ext.ext_type env)
      env constructors
  in
  let tyext =
    { tyext_path = type_path;
      tyext_txt = styext.ptyext_path;
      tyext_params = ttype_params;
      tyext_constructors = constructors;
      tyext_private = styext.ptyext_private;
      tyext_attributes = styext.ptyext_attributes; }
  in
    (tyext, newenv)

let transl_exception env sext =
  reset_type_variables();
  Ctype.begin_def();
  let ext =
    transl_extension_constructor env
      Predef.path_exn [] [] Asttypes.Public sext
  in
  Ctype.end_def();
  (* Generalize types *)
  Btype.iter_type_expr_cstr_args Ctype.generalize ext.ext_type.ext_args;
  may Ctype.generalize ext.ext_type.ext_ret_type;
  (* Check that all type variable are closed *)
  begin match Ctype.closed_extension_constructor ext.ext_type with
    Some ty ->
      raise (Error(ext.ext_loc, Unbound_type_var_ext(ty, ext.ext_type)))
  | None -> ()
  end;
  let newenv = Env.add_extension ~check:true ext.ext_id ext.ext_type env in
    ext, newenv

(* Translate a value declaration *)
let transl_value_decl env loc valdecl =
  let cty = Typetexp.transl_type_scheme env valdecl.pval_type in
  let ty = cty.ctyp_type in
  let v =
  match valdecl.pval_prim with
    [] when Env.is_in_signature env ->
      { val_type = ty; val_kind = Val_reg; Types.val_loc = loc;
        val_attributes = valdecl.pval_attributes }
  | [] ->
      raise (Error(valdecl.pval_loc, Val_in_structure))
  | decl ->
      let arity = Ctype.arity ty in
      let prim = Primitive.parse_declaration arity decl in
      if arity = 0 && (prim.prim_name = "" || prim.prim_name.[0] <> '%') then
        raise(Error(valdecl.pval_type.ptyp_loc, Null_arity_external));
      if !Clflags.native_code
      && prim.prim_arity > 5
      && prim.prim_native_name = ""
      then raise(Error(valdecl.pval_type.ptyp_loc, Missing_native_external));
      { val_type = ty; val_kind = Val_prim prim; Types.val_loc = loc;
        val_attributes = valdecl.pval_attributes }
  in
  let (id, newenv) =
    Env.enter_value valdecl.pval_name.txt v env
      ~check:(fun s -> Warnings.Unused_value_declaration s)
  in
  let desc =
    {
     val_id = id;
     val_name = valdecl.pval_name;
     val_desc = cty; val_val = v;
     val_prim = valdecl.pval_prim;
     val_loc = valdecl.pval_loc;
     val_attributes = valdecl.pval_attributes;
    }
  in
  desc, newenv

(* Translate a "with" constraint -- much simplified version of
    transl_type_decl. *)
let transl_with_constraint env id row_path orig_decl sdecl =
  Env.mark_type_used env (Ident.name id) orig_decl;
  reset_type_variables();
  Ctype.begin_def();
  let tparams = make_params env sdecl.ptype_params in
  let params = List.map (fun (cty, _) -> cty.ctyp_type) tparams in
  let orig_decl = Ctype.instance_declaration orig_decl in
  let arity_ok = List.length params = orig_decl.type_arity in
  if arity_ok then
    List.iter2 (Ctype.unify_var env) params orig_decl.type_params;
  let constraints = List.map
    (function (ty, ty', loc) ->
       try
         let cty = transl_simple_type env false ty in
         let cty' = transl_simple_type env false ty' in
         let ty = cty.ctyp_type in
         let ty' = cty'.ctyp_type in
         Ctype.unify env ty ty';
         (cty, cty', loc)
       with Ctype.Unify tr ->
         raise(Error(loc, Inconsistent_constraint (env, tr))))
    sdecl.ptype_cstrs
  in
  let no_row = not (is_fixed_type sdecl) in
  let (tman, man) =  match sdecl.ptype_manifest with
      None -> None, None
    | Some sty ->
        let cty = transl_simple_type env no_row sty in
        Some cty, Some cty.ctyp_type
  in
  let priv =
    if sdecl.ptype_private = Private then Private else
    if arity_ok && orig_decl.type_kind <> Type_abstract
    then orig_decl.type_private else sdecl.ptype_private
  in
  if arity_ok && orig_decl.type_kind <> Type_abstract
  && sdecl.ptype_private = Private then
    Location.prerr_warning sdecl.ptype_loc
      (Warnings.Deprecated "spurious use of private");
  let decl =
    { type_params = params;
      type_arity = List.length params;
      type_kind =
        if arity_ok && man <> None then orig_decl.type_kind else Type_abstract;
      type_private = priv;
      type_manifest = man;
      type_variance = [];
      type_newtype_level = None;
      type_loc = sdecl.ptype_loc;
      type_attributes = sdecl.ptype_attributes;
    }
  in
  begin match row_path with None -> ()
  | Some p -> set_fixed_row env sdecl.ptype_loc p decl
  end;
  begin match Ctype.closed_type_decl decl with None -> ()
  | Some ty -> raise(Error(sdecl.ptype_loc, Unbound_type_var(ty,decl)))
  end;
  let decl = name_recursion sdecl id decl in
  let decl =
    {decl with type_variance =
     compute_variance_decl env false decl
       (add_injectivity (List.map snd sdecl.ptype_params), sdecl.ptype_loc)} in
  Ctype.end_def();
  generalize_decl decl;
  {
    typ_id = id;
    typ_name = sdecl.ptype_name;
    typ_params = tparams;
    typ_type = decl;
    typ_cstrs = constraints;
    typ_loc = sdecl.ptype_loc;
    typ_manifest = tman;
    typ_kind = Ttype_abstract;
    typ_private = sdecl.ptype_private;
    typ_attributes = sdecl.ptype_attributes;
  }

(* Approximate a type declaration: just make all types abstract *)

let abstract_type_decl arity =
  let rec make_params n =
    if n <= 0 then [] else Ctype.newvar() :: make_params (n-1) in
  Ctype.begin_def();
  let decl =
    { type_params = make_params arity;
      type_arity = arity;
      type_kind = Type_abstract;
      type_private = Public;
      type_manifest = None;
      type_variance = replicate_list Variance.full arity;
      type_newtype_level = None;
      type_loc = Location.none;
      type_attributes = [];
     } in
  Ctype.end_def();
  generalize_decl decl;
  decl

let approx_type_decl env sdecl_list =
  List.map
    (fun sdecl ->
      (Ident.create sdecl.ptype_name.txt,
       abstract_type_decl (List.length sdecl.ptype_params)))
    sdecl_list

(* Variant of check_abbrev_recursion to check the well-formedness
   conditions on type abbreviations defined within recursive modules. *)

let check_recmod_typedecl env loc recmod_ids path decl =
  (* recmod_ids is the list of recursively-defined module idents.
     (path, decl) is the type declaration to be checked. *)
  let to_check path =
    List.exists (fun id -> Path.isfree id path) recmod_ids in
  check_well_founded_decl env loc path decl to_check;
  check_recursion env loc path decl to_check


(**** Error report ****)

open Format

let explain_unbound_gen ppf tv tl typ kwd pr =
  try
    let ti = List.find (fun ti -> Ctype.deep_occur tv (typ ti)) tl in
    let ty0 = (* Hack to force aliasing when needed *)
      Btype.newgenty (Tobject(tv, ref None)) in
    Printtyp.reset_and_mark_loops_list [typ ti; ty0];
    fprintf ppf
      ".@.@[<hov2>In %s@ %a@;<1 -2>the variable %a is unbound@]"
      kwd pr ti Printtyp.type_expr tv
  with Not_found -> ()

let explain_unbound ppf tv tl typ kwd lab =
  explain_unbound_gen ppf tv tl typ kwd
    (fun ppf ti -> fprintf ppf "%s%a" (lab ti) Printtyp.type_expr (typ ti))

let explain_unbound_single ppf tv ty =
  let trivial ty =
    explain_unbound ppf tv [ty] (fun t -> t) "type" (fun _ -> "") in
  match (Ctype.repr ty).desc with
    Tobject(fi,_) ->
      let (tl, rv) = Ctype.flatten_fields fi in
      if rv == tv then trivial ty else
      explain_unbound ppf tv tl (fun (_,_,t) -> t)
        "method" (fun (lab,_,_) -> lab ^ ": ")
  | Tvariant row ->
      let row = Btype.row_repr row in
      if row.row_more == tv then trivial ty else
      explain_unbound ppf tv row.row_fields
        (fun (l,f) -> match Btype.row_field_repr f with
          Rpresent (Some t) -> t
        | Reither (_,[t],_,_) -> t
        | Reither (_,tl,_,_) -> Btype.newgenty (Ttuple tl)
        | _ -> Btype.newgenty (Ttuple[]))
        "case" (fun (lab,_) -> "`" ^ lab ^ " of ")
  | _ -> trivial ty


let tys_of_constr_args = function
  | Types.Cstr_tuple tl -> tl
  | Types.Cstr_record lbls -> List.map (fun l -> l.Types.ld_type) lbls

let report_error ppf = function
  | Repeated_parameter ->
      fprintf ppf "A type parameter occurs several times"
  | Duplicate_constructor s ->
      fprintf ppf "Two constructors are named %s" s
  | Too_many_constructors ->
      fprintf ppf
        "@[Too many non-constant constructors@ -- maximum is %i %s@]"
        (Config.max_tag + 1) "non-constant constructors"
  | Duplicate_label s ->
      fprintf ppf "Two labels are named %s" s
  | Recursive_abbrev s ->
      fprintf ppf "The type abbreviation %s is cyclic" s
  | Cycle_in_def (s, ty) ->
      Printtyp.reset_and_mark_loops ty;
      fprintf ppf "@[<v>The definition of %s contains a cycle:@ %a@]"
        s Printtyp.type_expr ty
  | Definition_mismatch (ty, errs) ->
      Printtyp.reset_and_mark_loops ty;
      fprintf ppf "@[<v>@[<hov>%s@ %s@;<1 2>%a@]%a@]"
        "This variant or record definition" "does not match that of type"
        Printtyp.type_expr ty
        (Includecore.report_type_mismatch "the original" "this" "definition")
        errs
  | Constraint_failed (ty, ty') ->
      Printtyp.reset_and_mark_loops ty;
      Printtyp.mark_loops ty';
      fprintf ppf "@[%s@ @[<hv>Type@ %a@ should be an instance of@ %a@]@]"
        "Constraints are not satisfied in this type."
        Printtyp.type_expr ty Printtyp.type_expr ty'
  | Parameters_differ (path, ty, ty') ->
      Printtyp.reset_and_mark_loops ty;
      Printtyp.mark_loops ty';
      fprintf ppf
        "@[<hv>In the definition of %s, type@ %a@ should be@ %a@]"
        (Path.name path) Printtyp.type_expr ty Printtyp.type_expr ty'
  | Inconsistent_constraint (env, trace) ->
      fprintf ppf "The type constraints are not consistent.@.";
      Printtyp.report_unification_error ppf env trace
        (fun ppf -> fprintf ppf "Type")
        (fun ppf -> fprintf ppf "is not compatible with type")
  | Type_clash (env, trace) ->
      Printtyp.report_unification_error ppf env trace
        (function ppf ->
           fprintf ppf "This type constructor expands to type")
        (function ppf ->
           fprintf ppf "but is used here with type")
  | Null_arity_external ->
      fprintf ppf "External identifiers must be functions"
  | Missing_native_external ->
      fprintf ppf "@[<hv>An external function with more than 5 arguments \
                   requires a second stub function@ \
                   for native-code compilation@]"
  | Unbound_type_var (ty, decl) ->
      fprintf ppf "A type variable is unbound in this type declaration";
      let ty = Ctype.repr ty in
      begin match decl.type_kind, decl.type_manifest with
      | Type_variant tl, _ ->
          explain_unbound_gen ppf ty tl (fun c ->
              let tl = tys_of_constr_args c.cd_args in
              Btype.newgenty (Ttuple tl)
            )
            "case" (fun ppf c ->
                fprintf ppf
                  "%s of %a" (Ident.name c.Types.cd_id)
                  Printtyp.constructor_arguments c.cd_args)
      | Type_record (tl, _), _ ->
          explain_unbound ppf ty tl (fun l -> l.Types.ld_type)
            "field" (fun l -> Ident.name l.Types.ld_id ^ ": ")
      | Type_abstract, Some ty' ->
          explain_unbound_single ppf ty ty'
      | _ -> ()
      end
  | Unbound_type_var_ext (ty, ext) ->
      fprintf ppf "A type variable is unbound in this extension constructor";
      let args = tys_of_constr_args ext.ext_args in
      explain_unbound ppf ty args (fun c -> c) "type" (fun _ -> "")
  | Not_open_type path ->
      fprintf ppf "@[%s@ %a@]"
        "Cannot extend type definition"
        Printtyp.path path
  | Not_extensible_type path ->
      fprintf ppf "@[%s@ %a@ %s@]"
        "Type"
        Printtyp.path path
        "is not extensible"
  | Extension_mismatch (path, errs) ->
      fprintf ppf "@[<v>@[<hov>%s@ %s@;<1 2>%s@]%a@]"
        "This extension" "does not match the definition of type"
        (Path.name path)
        (Includecore.report_type_mismatch
           "the type" "this extension" "definition")
        errs
  | Rebind_wrong_type (lid, env, trace) ->
      Printtyp.report_unification_error ppf env trace
        (function ppf ->
          fprintf ppf "The constructor %a@ has type"
            Printtyp.longident lid)
        (function ppf ->
           fprintf ppf "but was expected to be of type")
  | Rebind_mismatch (lid, p, p') ->
      fprintf ppf
        "@[%s@ %a@ %s@ %s@ %s@ %s@ %s@]"
        "The constructor" Printtyp.longident lid
        "extends type" (Path.name p)
        "whose declaration does not match"
        "the declaration of type" (Path.name p')
  | Rebind_private lid ->
      fprintf ppf "@[%s@ %a@ %s@]"
        "The constructor"
        Printtyp.longident lid
        "is private"
  | Bad_variance (n, v1, v2) ->
      let variance (p,n,i) =
        let inj = if i then "injective " else "" in
        match p, n with
          true,  true  -> inj ^ "invariant"
        | true,  false -> inj ^ "covariant"
        | false, true  -> inj ^ "contravariant"
        | false, false -> if inj = "" then "unrestricted" else inj
      in
      let suffix n =
        let teen = (n mod 100)/10 = 1 in
        match n mod 10 with
        | 1 when not teen -> "st"
        | 2 when not teen -> "nd"
        | 3 when not teen -> "rd"
        | _ -> "th"
      in
      if n = -1 then
        fprintf ppf "@[%s@ %s@ It"
          "In this definition, a type variable has a variance that"
          "is not reflected by its occurrence in type parameters."
      else if n = -2 then
        fprintf ppf "@[%s@ %s@]"
          "In this definition, a type variable cannot be deduced"
          "from the type parameters."
      else if n = -3 then
        fprintf ppf "@[%s@ %s@ It"
          "In this definition, a type variable has a variance that"
          "cannot be deduced from the type parameters."
      else
        fprintf ppf "@[%s@ %s@ The %d%s type parameter"
          "In this definition, expected parameter"
          "variances are not satisfied."
          n (suffix n);
      if n <> -2 then
        fprintf ppf " was expected to be %s,@ but it is %s.@]"
          (variance v2) (variance v1)
  | Unavailable_type_constructor p ->
      fprintf ppf "The definition of type %a@ is unavailable" Printtyp.path p
  | Bad_fixed_type r ->
      fprintf ppf "This fixed type %s" r
  | Varying_anonymous ->
      fprintf ppf "@[%s@ %s@ %s@]"
        "In this GADT definition," "the variance of some parameter"
        "cannot be checked"
  | Val_in_structure ->
      fprintf ppf "Value declarations are only allowed in signatures"

let () =
  Location.register_error_of_exn
    (function
      | Error (loc, err) ->
        Some (Location.error_of_printer loc report_error err)
      | _ ->
        None
    )